三相同步发电机运行仿真与GUI设计


    三相步发电机运行仿真GUI设计

    步发电机广泛应诸领域着科技进步动化程度断提高步发电机需断改进适应日益提高动化程度需求步发电机电力系统中重复杂元件突然短路暂态程产生击电流达额定电流十倍种情况电机身相关电气设备带严重影响技术安全考虑直接进行试验性步发电机运行进行仿真具必性
    设计助MATLAB强实验仿真功GUI设计功通编写步发电机某障状态M文件进行仿真实验仿真结果通GUIDE创建进行设计仿真系统登录界面仿真实验界面更实现实验时机交互清晰显示障状态仿真波形利家掌握步发电机障状态性指标

    关键字:步发电机运行仿真 MATLAB M文件图形户界面




















    Threephase Synchronous Generator Running
    Simulation and GUI Design
    ABSTRACT
    Synchronous generators are widely used in many fieldsAs the science and technology advancingthe level of automation is gradually improvedsynchronous generators also need to be meliorated to adapt to the demand of constantly improvement of automation levelBut synchronous generators are the most important and complex elements in the Power SystemsTheir impulse current may reach more than ten times of the rated current when they suddenly shortcircuitedwhich may bring serious impact to the machine themselves and the related electric equipmentsConsidering from the technical and safety it unlikely to do this kind of test directly Thereforeit is quite essential to simulate of the running synchronous generators
    This design is by means of the powerful simulation functions and GUI design tools of MATLAB by analysing some kinds of trouble states of a synchronous generator to get appropriate Mfile to simulate to get simulation resultsand through GUIDE to create and design simulation system login interface and simulation experiment host interfaceThus we can easier to achieve the humancomputer interaction during the experimentsAccording to be showed with each trouble state simulation waveform we can pay less efforts to master the synchronous generators fault conditions of each performance indicators

    Keyword Synchronous GeneratorRunning SimulationMATLABMfile GUI







    目录
    第章 绪 ……………………………………………………………………1
    11选题意义……………………………………………………1
    12步发电机研究现状发展趋势2
    13 课题工作…………………………………………………………2
    131掌握步发电机工作原理工作特性…………………………………2
    132 MATLAB设计系统登录界面………………………………2
    133编写步发电机运行状态M文件完成GUI设计 ……………3
    第二章 步发电机基理…………………………………………………4
    21步发电机类型结构…………………………………………………4
    22 步发电机电枢反应……………………………………………………5
    23步发电机运行特性5
    231 步发电机空载特性……………………………………………………5
    232 步发电机短路特性……………………………………………………6
    233 步发电机外特性………………………………………………………6
    234 步发电机调整特性 ………………………………………………7
    24 步发电机空载时三相突然短路分析…………………………………7
    第三章 三相步发电机MATLAB仿真…………………………………10
    31 MATLAB简介…………………………………………………………… 10
    32 GUI概述设计求………………………………………………………11
    321 GUI概述11
    322 GUI设计求……………………………………………………………12
    323 GUI设计般步骤 …………………………………………………12
    33 步发电机数学模型…………………………………………………12
    331 步发电机原始方程 ………………………………………………12
    332 派克变换dq0坐标系统 13
    333dq0坐标系统表示步发电机方程式…………………………15
    第四章 仿真系统设计思路……………………………………………………18
    41 步发电机状态M文件编写思路18
    42 仿真界面设计思路………………………………………………………21
    421 仿真界面组件选择布局………………………………………21
    422 仿真界面项目子界面连接21
    423 子界面控件选择布局22
    43 仿真系统登录界面设计思路……………………………………………22
    第五章 仿真结果分析…………………………………………………………24
    51登录界面 …………………………………………………………………24
    52 仿真系统界面…………………………………………………………24
    53 功角特性仿真结果分析 ………………………………………………25
    54 步发电机空载建立电压仿真结果分析……………………………26
    55步发电机突然单相短路仿真结果………………………………………26
    551 步发电机突然单相短路阻尼仿真结果……………………………26
    552步发电机突然单相短路阻尼仿真结果 27
    553 步发电机突然单相短路仿真结果分析27
    56步发电机三相突然短路仿真结果27
    561步发电机三相突然短路阻尼仿真结果 …………………………27
    562步发电机三相突然短路阻尼仿真结果 27
    563步发电机三相突然短路仿真结果分析………………………………28
    57 步发电机突然两相空载短路仿真结果 ……………………………28
    571 步发电机突然两相空载短路阻尼仿真结果28
    572 步发电机突然两相空载短路阻尼仿真结果28
    573步发电机突然两相空载短路仿真结果分析28
    58 转子绕子短路定子突加称电压仿真结果……………………………29
    581转子绕子短路定子突加称电压阻尼情况仿真结果…………29
    582转子绕子短路定子突加称电压阻尼情况仿真结果29
    583转子绕子短路定子突加称电压仿真结果分析 29
    第六章 结30
    61 工作回顾……………………………………………………………30
    62改进方…………………………………………………………… 30
    致谢……………………………………………………………………………31
    参考文献………………………………………………………………………32
    附录A 英文翻译原文………………………………………………………33
    附录B 英文翻译译文…………………………………………………………42
    附录C登录界面程序源代码………………………………………………… 49
    附录D 仿真界面程序源代码…………………………………………… …52
    附录E子界面步发电机状态微分方程源程序……54
    第章 绪
    11选题意义
    电现代社会源发电机形式源转换成电机械设备公元1831年英国法拉第封闭电路中导线通电磁场导线转动电流流电线发现电磁感应原理建造第座发电机原型中包括磁场中迥转铜盘发电机产生电力法拉第发现电磁感应原理第二年受法拉第发现启示法国皮克希应电磁感应原理制成初发电机皮克希发电机旋转U 形磁铁(通手轮齿轮旋转)方两根铁芯绕导线线圈分准磁铁N 极S 极线圈导线引出样摇动手轮磁铁旋转时磁力线发生变化结果线圈导线中产生电流1967年德国发明家韦纳·冯·西门子发电机提出重改进认发电机磁铁(永久磁铁)电磁铁样磁力增强产生强电流做出第台具实价值发电机水轮机汽轮机柴油机动力机械驱动水流气流燃料燃烧原子核裂变产生量转化机械传发电机发电机转换电
    电现代类赖生存资源国电网建立高压基础断推行智电网发展发电机网求满足准期条件网求准确快速准确保障安全减少网发电机引起击快速够减发电机空载损耗着电网动化水断提高发电机需断改进适应动化水发展需求发电机种类分直流发电机交流发电机两类者分步发电机异步发电机两种现代发电站中常步发电机种发电机特点直流电流励磁提供功功率提供功功率满足种负载需异步发电机没独立励磁绕组结构简单操作方便负载提供功功率需接电网中汲取滞磁化电流异步发电机运行时必须步电机联者接相数量电容器限制异步发电机应范围较应型动化水电站城市电车电解电化学等行业直流电源20世纪50年代前采直流发电机直流发电机换器结构复杂制造费时价格较贵易出障维护困难效率交流发电机功率控整流器问世利交流电源半导体整流获直流电取代直流发电机趋势
    步发电机原动机分汽轮发电机水轮发电机柴油发电机 3种结构点型电机永久磁铁产生磁场外般磁场通直流电励磁线圈产生励磁线圈放转子电枢绕组放定子励磁线圈电压较低功率较两出线头容易通滑环引出电枢绕组电压较高功率三相绕组34引出头放定子较方便发电机电枢(定子)铁心硅钢片叠成减少铁耗转子铁心通磁通变整体钢块制成型电机中转子承受着强离心力制造转子材料必须选优质钢材步发电机电力系统中重复杂元件突然短路暂态程产生击电流达额定电流十倍种情况电机身相关电气设备带严重影响技术安全考虑直接进行试验性步发电机发生障准确迅速排障恢复电机相关设备正常运行限度减少障产生危害操员必须掌握步发电机障状态性指标步发电机运行进行仿真具必性界面友GUI户更掌握陈列知识容整仿真系统言设计GUI编写正确执行障状态程序等重
    12步发电机研究现状发展趋势
    电网交流电发电厂般采交流发电机电网中负荷部分感性负载必须发电机提供功功率假发电机异步发电机网必然量吸收功功率造成系统电压降低电网功缺额法维持合格电压步发电机输出功功率发出功功率步发电机种常发电机
    国型步发电机第代产品1956年电工局海组织统设计1957年完成第二代产品进行量实验研究调查研究基础1965年开始T2系列型三相步发电机统设计该水达六十年代国际先进水1979年开始进行TFW系列三相刷步发电机TFDW系列单相刷步发电机统设计1982年10月通样机鉴定工作推广生产两系列性指标达接时国际先进水
    着电机行业断发展电机产品外压涵断拓展电机通性逐渐专业性方发展破类电机分性质场合局面电机正专业性特殊性性化方发展目前着现代化工业生产规模逐渐增配套生产设备着型化高速运转方发展高电压等级高功率容量高性电机发展方重方促电机生产企业纷纷高压电机行业拢提高企业行业竞争力步发电机具电机法拟优点目前世界国均研究生产应高速发展电力工业适应国民济飞跃发展需提高发电机效率降低运行成着眼求增发电机容量降低电枢电流电气配套设备易制造省发电机升压设备步发电机额定电压提高20KV相应研究展开
    世界源需求断攀升然资源日益枯竭源供应商工业企业消费者提出新挑战高效持续方式源成务急风非常重储量巨源安全清洁充裕提供源源绝稳定源目前利风力发电已成风利形式受世界国高度重视发展速度快步发电机发电目前较普遍发电方式特变频器广泛解决风力机转速电网频率间耦合问题通变频器电流控制控制发电机转矩控制风力机转速稳定佳状态运行相条件步电机异步电机调速范围更宽运行更步发电机足处说永磁材料价格偏高变流器全功率变流技术容量体积价格高系统成高国变流器技术处研究试验批量应阶段技术成熟断提高两种技术国会存发展步电机会成流代表风电产业未发展方
    三相步发电机行业技术发展展:
    (1) 全密封低噪声振动精密轴承
    (2) 先进导磁材料(冷代热)
    13 课题工作
    131掌握步发电机工作原理工作特性
    分析步发电机工作原理解步发电机空载特性短路特性外特性调整特性分析步发电机正常状态影响罗列相应数学模型
    132 MATLAB设计系统登录界面
    系统登录界面需输入户名密码通验证正确进入仿真系统密码输入必须见*覆盖
    133编写步发电机运行状态M文件完成GUI设计
    通分析步发电机运行状态数学模型编写相应M文件开辟GUI罗列运行状态类型供户选择点击选择相应实验类型时够进入仿真界面运行


















    第二章 步发电机基理
    21步发电机类型结构
    步发电机分类种方法结构特点分凸极式隐极式立式卧式通风方式分开启式防护式封闭式(循环通风)冷方式分空气冷氢气冷水冷混合冷方式原动机分汽轮发电机水轮发电机原动机带动发电机(柴油发电机)













    图21 步发电机示意图


    步发电机定子部分转子部分组成具体

    (1) 定子(静止部分)
    步发电机定子异步电机类似更加强通风冷效果导磁定子铁心槽叠
    片叠成减少定子铁心铁损耗定子铁心轴长度隔 36cm留通风沟增加定子铁心散热面积叠装时层接缝错开减少铁心涡流损耗定子铁心圆开槽槽中放入三相称绕组定子铁心固定机座定子绕组许线圈联结成线圈股铜线绕制成(水冷电机空心导线)绕制股线时减少集肤效应引起附加损耗股线间需进行换位换位般线圈直线部分进行定子绕组异步电机样60°相带ABC三相空间称分布放定子槽导体槽楔压紧固定端部支架固定机座构成通风路径机座作固定定子铁心求应足够机械强度刚度承受加工运输运行程中种作力般汽轮发电机机座钢板拼焊成
    步发电机定子输出电功率产生旋转磁场
    (2) 转子
    转子分凸极式隐极式凸极式特点明显磁极气隙均匀般数1低速发电机隐极式特点转子相直流电机旋转电枢转子槽型做成开口槽 槽中放入励磁绕组时槽底侧面开通风沟励磁绕组固定重问题槽里导体槽楔压紧端部导体护环固定励磁绕组通转子集电环电刷装置外面直流电源构成回路隐极式转子外形没明显凸出磁极气隙较均匀般极数等1般应高速电机
    22 步发电机电枢反应
    电枢磁动势基波气隙中气隙磁通位置均发生变化种影响称电枢反应
    发电机接称负载电枢绕组中三相电流会产生旋转磁场称电枢反应磁场转速正转子转速相等两者步旋转电枢反应磁场转子励磁磁场均似认正弦规律分布间空间相位差取决空载电动势E0电枢电流I间时间相位差电枢反应磁场负载情况关发电机负载电感性时电枢反应磁场起磁作会导致发电机电压降低负载呈电容性时电枢反应磁场起助磁作会发电机输出电压升高
    23步发电机运行特性
    231 步发电机空载特性
    步发电机原动机拖动步转速步发电机励磁绕组里通入励磁电流会气隙里产生磁通电枢绕组切割气隙磁通产生称三相电动势定子绕组开路接负载情况步发电机空载运行空载运行时电枢绕组感应电动势称发电机空载电动势时等定子端电压U改变励磁电流 绘出步电机额定转速 关系曲线曲线步发电机
    图22 步发电机空载特性曲线 空载特性曲线
    空载特性曲线坐标电动势定子相绕组中感应电动势效值基气隙中基波磁通密度感应产生(气隙中谐波磁通密度感应谐波电动势通定子绕组短距分布消弱变)空载特性横坐标实际励磁电流产生磁动势实际磁动势基波磁动势空载特性然步发电机空载情况表达励磁磁动势感应电动势力发电机负载情况
    232 步发电机短路特性
    步发电机短路特性发电机步转速步电机定子绕组出线端短路定子电流励磁电流变化特性
    做步发电机短路实验时定子三相出线端短接电机拖动步转速励磁绕组中通入励磁电流时电枢绕组中产生短路电流改变励磁电流短路电流步发电机短路特性曲线图23示:
    短路特性条直线面隐极步发电机例说明理短路时定子绕组出线端电压U0气隙电动势
    (21)
    图23 步发电机短路特性
    电流I漏阻抗压降较较气隙磁通密度较电机磁路处饱状态合成磁动势较电阻压降IR更忽略电枢反应磁动势励磁磁动势方相反起直轴磁作时合成磁动势两磁动势差值短路电流增时电枢反应磁动势会正增加气隙电动势正增加磁路饱合成磁动势正增加造成励磁磁动势正增加励磁电流正增加电路电流励磁电流会成直线关系
    233 步发电机外特性
    图24 步发电机外特性
    步发电机外特性指电机转速步速变励磁电流负载功率数均常数条件改变负载电流I时端电压U变化曲线图24表示功率数负载步发电机外特性图中出纯电感负载时负载电流增加端电压降落较少电感性负载时负载电流增加端电压降落较电容性负载时负载电流增加端电压反会升高
    发电机功率数般规定08(滞)较电机中规定085090额定功率数电力系统需情况定电机制造部门求额定功率素进行设计电机额定电流进行时功率数宜低额定值否转子电流会发热热
    发电机投入空载长输电线时相发电机接电容负载种操作称输电线充电发电机充电电流励磁电流零端电压额定值时定子电流
    外特性求出发电机调整率电压调整率表示表示步发电机运行性重数电压调整率电机负载变化时会引起电网电压值波动现代步发电机数装快速动调节励磁装置负载变化时电网电压维持变发电机电压调整率求已放宽防止障跳闸切断负载时电压升太击穿绝缘求50代凸极步发电机实际值约1830
    234 步发电机调整特性
    图25 步发电机调整特性
    步发电机调整特性指发电机转速步速变负载功率数变负载电流变化时维持端电压变励磁电流变化曲线表示图25图带纯电阻负载电感性负载时负载电流增加励磁电流必须增加维持端电压变时称发电机励状态运行带电容性负载时负载电流增加励磁电流减少时称发电机欠励状态运行调整特性知道发电机运行定功率数维持端电压变负载电流励磁电流超制造厂规定运行员
    24 步发电机空载时三相突然短路分析
    (1)突然短路瞬间定子感应电势
    设短路瞬间转子位置图26(a) 该瞬间取时间零点容易推导出定子三相绕组感应电势:
    (22)
    (2)电枢电流周期分量形成磁场
    突然出现称三相电流必产生突然出现旋转磁场转速步速转转子相相转子位置变
    忽略电阻影响电流落电势90度时时空相-矢量图中三相合成磁势A相电流相量方图26(b)显然电枢磁势轴线励磁磁势矢量轴线(d轴)方相反
    (a) (b)
    图26 步发电机空载突然短路时空相-矢量图

    电枢电流形成旋转磁场磁力线图27(a)示出:试图穿闭合阻尼绕组励磁绕组中磁力线增加然励磁绕组阻尼绕组中会产生感应电势感应电流阻碍增加两者作结果励磁绕组阻尼绕组闭合回路中磁通短路瞬间发生突变电枢磁场磁力线走漏磁路磁阻磁导电抗
    (3)电枢突然短路电流初始值
    定子绕组出线端电机部等效电抗相三绕组变压器第二第三绕组短路忽略电阻表现出等效电抗称直轴超瞬态电抗图27(b)示图中 次步电机电枢反应电抗励磁绕组直轴阻尼绕组漏电抗图27(b)示等效电路容易直轴超瞬态电抗表达式
    (23)











    (a) (b)
    图27 电枢电流周期分量形成旋转磁场磁路应电抗




    励磁绕组直轴阻尼绕组漏电抗值直轴超瞬态电抗标值般01~015
    显然果没阻尼绕组阻尼绕组起作等效电抗
    (24)
    称直轴瞬态电抗标值02左右
    直轴超瞬态电抗稳态短路时情况相似根式(22)定子瞬态电流表达式稳态短路时稳态短路相直轴电抗变定子瞬态电流
    (25)
    初始值
    (26)
    定子瞬态电流周期分量初始值
    (27)

    第三章 三相步发电机MATLAB仿真
    31 MATLAB简介
    MATLAB美国mathworks公司发布面科学计算视化交互式程序设计高科技计算环境数值分析矩阵计算科学数视化非线性动态系统建模仿真等诸强功集成易视窗环境中科学研究工程设计必须进行效数值计算众科学领域提供种全面解决方案程度摆脱传统非交互式程序设计语言编辑模式代表国际科学计算软件先进水
    MATLAB 应范围非常广包括信号图处理通讯控制系统设计测试测量财务建模分析计算生物学等众应领域附加工具箱(单独提供专 MATLAB 函数集)扩展 MATLAB 环境解决应领域特定类型问题
    MATLAB特点优势
    (1)友工作台编程环境
    MATLAB系列工具组成工具方便户MATLAB函数文件中许工具采图形户界面包括MATLAB桌面命令窗口历史命令窗口编辑器调试器路径搜索户浏览帮助工作空间文件浏览器着MATLAB商业化软件身断升级MATLAB户界面越越精致更加接Windows标准界面机交互性更强操作更简单新版MATLAB提供完整联机查询帮助系统极方便户简单编程环境提供较完备调试系统程序必编译直接运行够时报告出现错误进行出错原分析
    (2)简单易程序语言
    Matlab高级矩阵阵列语言包含控制语句函数数结构输入输出面象编程特点户命令窗口中输入语句执行命令步先编写较复杂应程序(M文件)起运行新版MATLAB语言基流行C++语言基础语法特征C++语言极相似更加简单更加符合科技员数学表达式书写格式更利非计算机专业科技员种语言移植性拓展性极强MATLAB够深入科学研究工程计算领域重原
    (3)强科学计算机数处理力
    MATLAB包含量计算算法集合拥600工程中数学运算函数方便实现户需种计算功函数中算法科研工程计算中新研究成果前种优化容错处理通常情况代底层编程语言CC++ 计算求相情况MATLAB编程工作量会减少MATLAB函数集包括简单基函数诸矩阵特征量快速傅立叶变换复杂函数函数解决问题致包括矩阵运算线性方程组求解微分方程偏微分方程组求解符号运算傅立叶变换数统计分析工程中优化问题稀疏矩阵运算复数种运算三角函数初等数学运算维数组操作建模动态仿真等户繁杂数学运算分析中解脱出
    (4)出色图形处理功图形处理功
    MATLAB具方便数视化功量矩阵图形表现出图形进行标注印高层次作图包括二维三维视化图象处理动画表达式作图科学计算工程绘图新版MATLAB整图形处理功作改进完善仅般数视化软件具功(例二维曲线三维曲面绘制处理等)方面更加完善软件没功(例图形光处理色度处理四维数表现等)MATLAB样表现出色处理力时特殊视化求例图形话等MATLAB相应功函数保证户层次求外MATLAB着重图形户界面(GUI)制作作改善方面特殊求户满足实现计算结果编程视化
    (5)应广泛模块集合工具箱
    MATLAB许专门领域开发功强模块集工具箱户直接工具箱学应评估方法需编写代码目前MATLAB已工具箱延伸科学研究工程应诸领域诸数采集数库接口概率统计样条拟合优化算法偏微分方程求解神网络波分析信号处理图处理系统辨识控制系统设计LMI控制鲁棒控制模型预测模糊逻辑金融分析图工具非线性控制设计实时快速原型半物理仿真嵌入式系统开发定点仿真DSP通讯电力系统仿真等工具箱(Toolbox)家族中席户提供量方便实处理工具
    (6)实程序接口发布台
    新版MATLAB利MATLAB编译器CC++数学库图形库MATLAB程序动转换独立MATLAB运行CC++代码允许户编写MATLAB进行交互CC++语言程序外MATLAB网页服务程序容许Web应中MATLAB数学图形程序MATLAB重特色具套程序扩展系统组称工具箱特殊应子程序工具箱MATLAB函数子程序库工具箱某类学科专业应定制包括信号处理控制系统神网络模糊逻辑波分析系统仿真等方面应
    (7)应软件开发(包括户界面)
    开发环境中户更方便控制文件图形窗口编程方面支持函数嵌套条件中断等图形化方面更强图形标注处理功包括性起连接注释等输入输出方面直接ExcelHDF5进行连接
    32 GUI概述设计求
    321 GUI概述
    GUI Graphical User Interface 简写图形户界面准确说 GUI 屏幕产品视觉体验互动操作部分GUI窗口光标键菜单文字等说明象构成户界面户通定方法选择激活图形象计算机产生某种动作变化GUI 种结合计算机科学美学心理学行学商业领域需求分析机系统工程强调—机—环境三者作系统进行总体设计种面客户系统工程设计目优化产品性操作更性化减轻者认知负担更适合户操作需求直接提升产品市场竞争力GUI 机交互图形化户界面设计观国际相关产业图形化户界面设计方面发展现状许国际知名公司早已意识 GUI 产品方面产生强增值功带动巨市场价值公司部设立相关部门专门事 GUI 研究设计业间成立干机构互相交流 GUI 设计理验目着中国IT产业移动通讯产业家电产业迅猛发展产品机交互界面设计水发展日显滞提高产业综合素质提升国际等业者竞争力等等方面疑起制约作
    322 GUI设计求
    创建MATLAB GUI必须具3基元素:
    (1)组件 MATLAB GUI中项目图形化组件组件分3类:图形化控件(钮编辑框列表滚动条等)静态元素(窗口文字符串)菜单坐标系图形化控件静态元素函数uicontrol创建菜单函数uimenuuicontextmenu创建坐标系常显示图形化数函数axes创建
    (2)图形窗口 GUI组件必须安排图形窗口中画数图时图形窗口通常会动创建函数figure创建空图窗口空图窗口常放置种类型组件
    (3)回应 果户鼠标单击键盘输入信息程序相应动作鼠标单击输入信息事件果MATLAB程序运行相应函数MATLAB函数肯定会反应
    实现GUI程包括两基务:GUI组件布局GUI组件编程外户必须够保存发布GUI户开发图形户界面够真正应功通图形户界面开发环境完成
    MATLAB创建GUI两种方法:利GUIDE创建GUI利编程创建GUI
    GUIDE布局GUI时生成两文件:
    (1)FIG文件该文件包括GUI图形窗口子象(包括户控件坐标轴)完全描述象属性值
    (2)M文件该文件包括户发布控制界面回调函数种函数该文件包含组件布置信息
    GUI设计需遵循原:
    (1)简单性设计界面时力求简洁清晰体现界面功特征删设计保持整洁图形界面直观减少窗口数目避免窗口回切换
    (2)致性求界面设计风格量致已存界面风格截然相反
    (3)常性设计界面时应量熟悉标志符号
    (4)素注意界面动态性界面相应迅速连续长时间运算出等时间提示允许户中断运算等
    323 GUI设计般步骤
    界面制作包括界面设计程序实现程步位需反复修改获满意界面
    步骤1:分析界面求实现功明确设计务
    步骤2:构思草图者功实现角度出发机实现
    步骤3:编写象响应程序实现功进行逐项检查
    33 步发电机数学模型
    331 步发电机原始方程
    研究步发电机特性时常采取简化步发电机成理想步发电机步发电机六磁耦合绕组相应六回路绕组联方程回路电压方程描述建立方程前首先选定变量正方图31标出绕组电流正方图32示出回路电路(画感)中标明电压正方
    根述规定定子转子绕组磁链感应电动势正方符合右手螺旋定律
    根规定正方出定子转子回路电动势方程:











    图31 步发电机绕组示意图 图32 步发电机绕组回路电路图
    根述规定定子转子绕组磁链感应电动势正方符合右手螺旋定律出定子转子回路电动势方程:
    (31)
    中磁链时间倒数步发电机绕组磁链绕组感磁链绕组绕组间互感磁链组合成磁链方程:
    (32)
    式中绕组a感系数绕组a绕组b互感系数余q轴阻尼绕组Q励磁绕组fd轴阻尼绕组D垂直
    (33)
    332 派克变换dq0坐标系统
    发电机转子轴横轴磁导完全确定分析电枢磁势转子磁场作采双反理电枢磁势分解轴分量横轴分量避免步发电机稳态分析中出现改变参数问题
    步发电机稳态称运行电枢磁势幅值变转速恒定相转子静止步转速旋转矢量表示果定子电流步旋转通相量表示(定子相绕组轴线投影相电流瞬时值)相量矢量时刻相位数值成例图33示
    电枢磁势分解法结合图形:
    (34)
    定子三相电流瞬时值:
    (35)
    利三角恒公式两公式:
    (36)
    图33 定子电流通相量

    通种变换三相电流变换成等效两相电流设想两电流定子等效绕组ddqq中电流组等效定子绕组着转子旋转等效绕组中电流产生磁势相转子静止遇磁路磁阻恒定变相应电感系数常数
    定子绕组存幅值恒定三相称电流时式(36)确定常数等效ddqq绕组电流直流
    果定子绕组中存幅值恒定三相称电流衡系统满足:然通相量代表三相电流通相量幅值转速恒定d轴q轴投影幅值变化
    定子三相电流构成衡系统时三相电流三独立变量仅两新变量(d轴分量q轴分量)足代表原三分量需增选第三新变量值:
    (37)
    关系式(37)常见称分量法中零序电流表达式相似里电流瞬时值称分量法中正弦电流相量称定子电流零轴分量
    式(36)(37)构成abc坐标dq0坐标系转换矩阵合写成
    (38)
    缩写
    (39)
    式中
    (310)变换矩阵容易验证矩阵P非奇存逆阵
    (311)
    利逆变换
    (312)

    展开写成
    (313)
    见三相电流衡时相电流中含相零轴分量定子三相绕组完全称空间互相位移电角度三相零轴电流气隙中合成磁势零产生转子绕组相交链磁通产生定子绕组交链磁通值转子位置关
    述变换称派克(Park)变换仅定子电流定子绕组电压磁链实施种变换变换关系式相
    333dq0坐标系统表示步发电机方程式
    (1)磁链坐标转换
    式(33)展开:
    (314)
    式(314)左P利Park变换
    (315)
    通矩阵演算

    述表达式代入(315)合写
    (316)
    变换dq0坐标系统磁链方程
    (2)电压坐标变换
    (31)
    (317)
    式等号两边左P综合(310)(311)(312):
    (318)
    分两端取导数:
    (319) (320)
    式中:


    样便dq0轴分量表示电压方程:
    (321)
    式(321)展开重写(31)步发电机派克方程:
    (322)
    坐标转换磁链方程变线性代数方程组两电压方程式存发电机电动势成非线性方程研究电力系统短路稳定问题时发电机转速变化做常数处理样电压方程组线性微分方程求解简化
    第四章 仿真系统设计思路
    41 步发电机状态M文件编写思路
    三相步发电机仿真程序编写基步发电机数学模型数学模型般建立dq0坐标系统求出dq0系统坐标量时通Park变换量转化步发电机原始量根第三章述dq0坐标系统表示步发电机方程式步发电机模型简化:
    (a)d轴电路 (b)q轴电路
    图41 步发电机原理等效图
    q轴电路中电感阻抗般相通式子表示根电磁感应定律建立编写运行状态M文件需数学模型:
    (41)



    式中: dq—dq0坐标系轴坐标
    Rs—定转子轴坐标
    Lm—感互感
    fk—励磁绕组阻尼绕组
    述数学模型假设发电机阻尼基础写出发电机没阻尼时需述数学模型基础掉相应电压方程磁链方程:
    (42)
    某台步发电机基参数(名值):
    r2906959013E0111900200812431430892E01
    3216497153E0130712E0149076E0110365
    式(41)(42)中电感互感参数步发电机基参数关系:
    (43)
    发电机状态进行仿真时般电压值已知进行仿真时般显示电流波形式(321)出电感电阻已知电压电流未知式(316)出电流关系通该式子电流表示三相电流构成衡系统时引入变量量波形没实际意义省式(321)转换:
    (44)
    结合发电机基参数现电压电流未知量发电机状态进行仿真时般电压值已知进行仿真时般显示电流波形通什方法消利式(44)求出电流量
    根法拉第电磁感应定律知电磁感应电动势公式: 电流存关系:
    (45)
    式(45)代入式(44)互感转换dq0坐标量电压电流通方程:
    (46)
    中G矩阵
    (47)
    发电机基参数定电压值通解微分方程求电流值求电流值dq0坐标系统量通Park变换逆变换步发电机相电流根步发电机原始方程参数步发电机状态M文件编写思路框图表示:

    图42 步发电机运行状态M文件设计思路
    42 仿真界面设计思路
    421 仿真界面组件选择布局
    根课题设计具体求仿真界面需罗列步发电机种运行状态类型选择类型应窗口显示该类型实验项目选择实验项目应窗口显示该实验说明帮助
    GUIDE创建GUI中够罗列步发电机种运行状态组件种:
    (1)文标签(Static Text) 文标签固定显示字符串标签区域果罗列步发电机种状态必须添加功钮链接进入相应实验项目界面界面简洁性考虑般采文标签显示状态
    (2)文框(Edit Text)文框支持户通键盘输入字符串然显示文状态固定允许户界面擅修改便采
    (3)拉菜单(Popup menu)拉菜单类似组单选钮户选择中项目设置程序运行某输入参数取值拉菜单界面时显示Popup menu 中String显示中行需仿真运行状态较少果采拉菜单罗列户查仿真状态太直观拉菜单占单行单独放界面太美观
    (4)单选钮(Radio Button) 单选钮常组联合实现属性项项取值回切换组单选钮时间相项选定考虑采
    (5)复选框(Check Box) 复选框单选钮样响应选定操作果复选框时运行种状态户法知显示出实验项目运行状态响应果运行种状态单选钮完全代功适合显示运行状态
    (6)拉列表框(List Box) 拉列表框累似组复选框户选择项目设置程序运行输入参数直观显示行字符串通选择StringValue值编写Value值响应函数执行相应程序点击列表框中某行字符串时执行相应程序段进入实验项目
    (7)钮(Push Button) 钮常控件执行鼠标单击事件动作
    综合述选择组件罗列步发电机种运行状态类型时Radio ButtonList BoxPush Button错选择界面保持致性量仅选种组件显示运行状态Push Button常控件界面更加性化里采Push Button显示种运行状态
    控件布局时界面整洁需位置调整工具(Alignment Tools)选择钮左齐离界面左界定空隙
    422 仿真界面项目子界面连接
    考虑采界面直接调M文件出仿真图仅仅Figure完实现机交互功界面M文件间建立子界面界面选择发电机状态够进入相应实验子界面该子界面显示相应状态电流波形功时需机交互组件
    编辑界面钮属性编写相应钮callback函数callback函数中加语句实现仿真界面子界面连接:
    function 钮Tag_Callback(hObject eventdata handles)
    子界面GUI名称
    423 子界面控件选择布局
    子界面求显示图形必须选择坐标轴(Axes)组件界面初始时坐标轴图形显示设置默认图需显示电流波形图坐标轴控件时显示波形采subplot分区域画图样子界面做相说较时候户需解电流波形图选择坐标轴控件显示图形时样面着问题子界面选坐标轴控件界面添加够罗列显示电流曲线名称里选择Popup menu通改变Popup menu属性Value值坐标显示电流曲线通switch Value语句实现子界面调M文件Case语句中执行画图方便状态方程M文件放置初始数微分方程求解绘图语句放子界面程序段中
    求解微分方程solver指令种场合
    表41 种solver指令适场合


    解算指令solver
    解题类型
    适场合
    ode45
    非刚性
    数场合首选算法
    ode23
    非刚性
    较低精度()场合
    ode113
    非刚性
    ode45计算时间太长时取代ode45
    ode23t
    适度刚性
    适度刚性
    ode15s
    刚性
    ode45失败时存质量矩阵时
    ode23s
    刚性
    低精度时ode15s效存定常质量矩阵时
    ode23tb
    刚性
    低精度时ode15s效存定常质量矩阵时
    43 仿真系统登录界面设计思路
    登录界面首先输入户名密码输入正确户名通验证方进入仿真系统通常登录界面户名密码分Edit Text中输入密码原文密码框显示必须*覆盖两文框前需提供定解释说明说明文框输入户名文框式输入密码选择两文标签完成相应注释两文标签String属性分:户名密码输入户名密码需验证原应该户名相应密码通excel者txt等进行存储登录框应范围求较程序段中设置户名密码
    进入验证方式两种:种添加登录钮通鼠标点击钮进入验证种通键盘输入Enter进入验证
    点击钮控件登录开始验证果验证发现错误弹出相应提示返回登录界面重新输入验证种思路钮控件登录callback函数应该:
    function pushbutton1_Callback(hObject eventdata handles) 登录钮
    passChar get(handlesdl_code'UserData') 键盘输入字符
    userChar get(handlesdl_user'String')
    if strcmp(passCharhandlescode)&strcmp(userCharhandlesuser) 验证正确
    msgbox('欢迎进入步发电机仿真系统')
    delete(gcf)
    close(dl)
    fangzhenjiemian 进入仿真界面
    else 验证出错
    errordlg('户名密码错误''错误提示')
    clc handlesdl_code
    clc handlesdl_user 清空文框里容
    end
    输入完密码框中容回车键进入验证出现出现输错容需补者退格重新输入进行验证针键盘效应函数写成:
    function dl_code_KeyPressFcn(hObject eventdata handles)
    currChar get(gcf'CurrentCharacter')
    oldChar get(hObject'UserData')
    xinghaoget(hObject'string')
    userCharget(handlesdl_user'string')
    if (currChar>'0'&currChar<'9')|(currChar>'a'&currChar<'z')
    |(currChar>'A'&currChar<'Z') 果键盘输入0—9间数值者字母继续输入覆*
    oldChar [oldChar currChar]
    xinghao[handlesxinghao '*']
    set(hObject'UserData'oldChar'string'xinghao)
    handlesxinghaoxinghao
    guidata(hObjecthandles)
    elseif double(currChar)26|double(currChar)8 补键ASCII值26退格键8键盘输入两值继续输入
    oldChar''
    handlesxinghao''
    set(hObject'UserData'oldChar'string'handlesxinghao)
    guidata(hObjecthandles)
    elseif double(currChar)13 Enter键ASCII值13键盘输入键开始验证验证流程点击钮登录致
    set(hObject'string'xinghao)
    if strcmp(oldCharhandlescode)&strcmp(userCharhandlesuser)
    msgbox('登陆成功')
    close(gcf) 关闭消息框
    close(dl) 关闭登录界面
    fangzhenjiemian
    else
    set(hObject'string''''UserData''')
    handlesxinghao''
    guidata(hObjecthandles)
    errordlg('户名密码错误''错误提示')
    end
    else
    set(hObject'UserData'oldChar)
    set(hObject'string'handlesxinghao)
    end
    第五章 仿真结果分析
    51登录界面












    图51 步发电机仿真系统登录界面
    登录界面够输入户名密码进行验证户通身份验证便进入仿真系统界面输入户名密码误够返回登录界面重新输入户名密码次进行身份验证
    52 仿真系统界面
















    图52 步发电机仿真系统界面
    仿真系统界面设置顶部菜单顶部菜单包括仿真系统操作说明快捷键系统设置子界面快捷键通快捷键进入相应仿真界面
    实验系统坐标建立步发电机数学模型步发电机功角特性abc坐标系统分析建立数学模型参数采发电机实际参数空载建立电压三相突然短路转子绕组短路定子突加称电压三仿真实验dq0坐标系统建立数学模型仿真结果突然单相短路突然两相空载短路坐标系统建立数学模型仿真结果系统兼dq0坐标系统优点通仿真表明采该系统效节约仿真时间计算效率提高
    53 功角特性仿真结果分析

    图53 步发电机功角特性仿真
    隐极步发电机功角特性仿真隐极步发电机相量图基础建立数学模型隐极步发电机相量图图54示图:
    (51)

    化简式: 图54 隐极步发电机相量图
    (52)

    (53)
    根:
    (54)
    功角特性仿真程序基式(54)编写出整式子推导程步发电机功角特性仿真隐极步发电机成理想电机仿真出波形滑实际功角曲线会波动
    54 步发电机空载建立电压仿真结果分析
    (a)阻尼绕组 (b)阻尼绕组
    图55 步发电机空载建立电压仿真结果
    图55出空载阻尼时建立稳定电流时间空载阻尼情况建立稳定电流时间短根法拉第电磁感应定律知果励磁绕组测绕组两端电压阻尼时更快达稳定电压
    55步发电机突然单相短路仿真结果
    551 步发电机突然单相短路阻尼仿真结果


    (a)Ifd时间变化曲线 (b)Ikd时间变化曲线 (c)Ibeta0 时间变化曲线

    (c)Ibeta0 时间变化曲线
    图56 步发电机突然单相短路阻尼仿真结果
    552步发电机突然单相短路阻尼仿真结果
    (a)Ifd时间变化曲线 (b)Ibeta0时间变化曲线
    图57步发电机突然单相短路阻尼仿真结果
    553 步发电机突然单相短路仿真结果分析
    图56图57知步发电机发生突然单相短路时会产生击电流短时间种障状态会电机带严重影响
    56步发电机三相突然短路仿真结果
    561步发电机三相突然短路阻尼仿真结果
    (a)Id时间变化曲线 (b)Ifd时间变化曲线 (c)Ia时间变化曲线
    图58 步发电机三相突然短路阻尼仿真结果
    562步发电机三相突然短路阻尼仿真结果
    (a)Id时间变化曲线 (b)Ifd时间变化曲线 (c)Ia时间变化曲线
    图59 步发电机三相突然短路阻尼仿真结果
    563步发电机三相突然短路仿真结果分析
    步发电机发生三相短路时短路瞬间相电流达额定电流十倍非常电流会步发电机相关电气设备产生破坏步发电机运行时特注意避免发生三相短路短路发生时时切障源步发电机相连电气设备定安装动重合闸装置
    通图58图59知阻尼绕组时分周期电流衰减速度阻尼绕组时快绕组身电流突变元件
    57 步发电机突然两相空载短路仿真结果
    571 步发电机突然两相空载短路阻尼仿真结果
    (a)Ifd时间变化曲线 (b)Ikd时间变化曲线 (c)Ibeta0时间变化曲线
    图510 步发电机两相空载短路阻尼仿真结果
    572 步发电机突然两相空载短路阻尼仿真结果
    (a)Ifd时间变化曲线 (b)Ikd时间变化曲线
    图511步发电机突然两相空载短路阻尼仿真结果
    573步发电机突然两相空载短路仿真结果分析
    两相空载短路时短路电流短路电流长时间没变说明两相空载短路时发电机影响
    58 转子绕子短路定子突加称电压仿真结果
    581转子绕子短路定子突加称电压阻尼情况仿真结果
    (a)Id时间变化曲线 (b)Ifd时间变化曲线 (c)Ikd时间变化曲线图
    图512 步发电机转子绕子短路定子突加称电压阻尼情况仿真结果
    582转子绕子短路定子突加称电压阻尼情况仿真结果
    (a)Id时间变化曲线 (b)Ifd时间变化曲线 (c)Ia时间变化曲线图
    图513 步发电机转子绕子短路定子突加称电压阻尼情况仿真结果
    583转子绕子短路定子突加称电压仿真结果分析
    步发电机转子绕子短路定子突加称电压障状态刚发生短路时暂态电流图512知d轴方电流衰减快概05s左右衰减接0a相短路电流直保持原q轴方短路电流没衰减
    第六章 结
    三月学努力终利完成步发电机运行运行仿真GUI设计课题毕业设计毕设总结:
    61 工作回顾
    毕业设计做出简单行步发电机运行仿真系统基完成导师布置项务求
    工作:
    (1)完成步发电机模型简化
    (2)dq0坐标系统建立步发电机数学模型
    (3)明确阐述整系统设计思路
    (4)制作简单登录界面身份验证利进入仿真界面
    (5)仿真界面罗列步发电机种运行状态类型供户选择点击相应类型显示该实验绘制曲线GUI显示图形
    (6)建立编写步发电机种运行状态仿真程序
    62改进方
    毕业设计然完成课题务方做够完善:
    (1)仿真登录界面户名密码固定户名密码进行验证户名密码应该组数新户注册功缺乏功应范围会受限制
    (2)够仿真步发电机运行状态够做够全面
    (3)参数设置项没实现参数格式校验户界面输入矩阵行列初始相时法仿真没定错误提示导致户法找错误根源
    然设计够成熟功尚够完善真已努力做毕业设计包括步发电机dq0坐标系统数学模型认真推导写整推导程通次毕设已够熟练MathtypeVisioword等毕业相关操作软件MATLAB学更深层次着成品更加相信敢尝试会意外收获








    致谢
    期学期毕业设计已接尾声四年学生涯圈句号
    着利完工毕业设计心中充满感激感谢学期毕业设计阶段帮助首先感谢导师XX老师步步走中包含罗老师耐心指引教导感谢罗老师介绍毕设程中需软件耐心教导方法百忙中抽出时间解答毕业设计程中疑惑感谢罗老师指明设计需关键变换:派克变换思路连接起实现设计感谢罗老师做仿真系统提出宝贵意见仿真界面更加完善点次罗老师表示感谢
    感谢做课题王艳苹学设计完成程中互相讨互相提建议通互相交流相互谦避免设计雷做课题进度会定性通王艳苹毕设进度提高学动性做毕设积极性没前动力现没做完
    外感谢罗杰老师带六位学生登录界面设计整程中相互讨解决户名密码验证误重新输入正确验证问题
    感谢父母二十年辛勤养育条件支持追求梦想爱前行动力
    设计程中许学宝贵建议致诚挚谢意
    衷心感谢电气学院位老师谢谢专业知识传授拥定解决问题力
    衷心祝愿华东交通学明天更加美
    参考文献
    1 张志涌等精通MATLAB65版[M]北京北京航空航天学出版社2004
    2 李维波MATLAB电气工程中应[M]北京中国电力出版社2007
    3 李发海朱东起电机学[M]北京科学出版社2007
    4 周德贵巩北宁步发电机运行技术实践[M]北京中国电力出版社2004
    5 陈垚光毛涛涛王正林王玲精通MATLAB GUI设计[M]北京电子工业出版社20082
    6 潘晓晟郝世勇MATLAB电机仿真精华50例[M]北京电子工业出版社2007
    7 刘卫国MATLAB程序设计应(第二版)[M]北京高等教育出版社20067
    8 罗杰基GUI步发电机实验系统仿真[J]科技创新导报20101716
    9 刘凤春孙建忠牟宪民电机拖动MATLAB仿真学指导[M]北京机械工业出版社 20089
    10 黄瑛基MATLAB GUI电机学仿真实验系统设计[J]2009173839
    11 Vlatko Cmitsuru MHideo YComputer simulation of a threephase brushless selfexcited synchronous generator[J]IEEE Trans on Magnetics199935(3)12511254
    12 AEFitzgeraldCharles KingsleyJrStephen DUmansElectric Machinery(Sixth Edition)[M]BeijingTsinghua University Press2003
    13 曹娜电力系统分析[M]北京北京学出版社20092
    14 夏道止电力系统分析[M]北京中国电力出版社2004
    附录A 英文翻译原文
    11 Introduction to Polyphase Synchronous Machines
    In older machinesthe excitation current was typically supplied through slip rings from a dc machine referred to as the exciter which was often mounted on the same shaft as the synchronous machine In more modern systems the excitation is supplied from ac exciters and solidstate rectifiers In some cases the rectification occurs in the stationary frame and the rectified excitation current is fed to the rotor via slip tings In other systems referred to as brushless excitation systems the alternator of the ac exciter is on the rotor as is the rectification system and the current is supplied directly to the fieldwinding without the need for slip tings
    A single synchronous generator supplying power to an impedance load acts as a voltage source whose frequency is determined by the speed of its mechanical drive (or prime mover) The amplitude of the generated voltage is proportional to the frequency and the field current The current and power factor are then determined by the generator field excitation and the impedance of the generator and load
    Synchronous generators can be readily operated in parallel and in fact the electricity supply systems of industrialized countries typically have scores or even hundreds of them operating in parallel interconnected by thousands of miles of transmission lines and supplying electric energy to loads scattered over areas of many
    thousands of square miles These huge systems have grown in spite of the necessity for designing the system so that synchronism is maintained following disturbances and the problems both technical and administrative which must be solved to coordinate the operation of such a complex system of machines and personnel The principal reasons for these interconnected systems are reliability of service and economies in plant investment and operating costs
    When a synchronous generator is connected to a large interconnected system containing many other synchronous generators the voltage and frequency at its armature terminals are substantially fixed by the system As a result armature currents will produce a component of the airgap magnetic field which rotates at synchronous speed as determined by the system electrical frequency For the production of a steady unidirectional electromechanical torque the fields of the stator and rotor must rotate at the same speed and therefore the rotor must turn at precisely synchronous speed Because any individual generator is a small fraction of the total system generation it cannot significantly affect the system voltage or frequency It is thus often useful when studying the behavior of an individual generator or group of generators to represent the remainder of the system as a constantfrequency constantvoltage source commonly referred to as an infinite bus
    Many important features of synchronousmachine behavior can be understood from the analysis of a single machine connected to an infinite bus The steadystate behavior of a synchronous machine can be visualized in terms of the torque equation
    With changes in notation appropriate to synchronousmachine theroy
    (11)
    Where
    resultant airgap flux per pole
    mmf of the dc field winding
    electrical phase angle between magnetic axes of and
    In normal steadystate operation the electromechanical torque balances the mechanical torque applied to the shaft In a generator the primemover torque acts in the direction of rotation of the rotor pushing the rotor mmf wave ahead of the resultant airgap flux The electromechanical torque then opposes rotation The opposite situation exists in a synchronous motor where the electromechanical torque is in the direction of rotation in opposition to the retarding torque of the mechanical load on the shaft
    Variations in the electromechanical torque result in corresponding variations in the torque angle as seen from Eq 11 The relationship is shown in the form of a torqueangle curve in Fig 11 where the field current (rotor mmf) and resultant airgap flux are assumed constant Positive values of torque represent generator action corresponding to positive values of for which the rotor mmf wave leads the resultant airgap flux
    As the primemover torque is increased the magnitude of must increase until the electromechanical torque balances the shaft torque The readjustment process is actually a dynamic one requiting a change in the mechanical speed of the rotor typically accompanied by a damped mechanical oscillation of the rotor about its new steadystate torque angle This oscillation is referred to as a hunting transient In a practical machine undergoing such a transient some changes in the amplitudes of the resultant fluxdensity and fieldwinding mmf wave may also occur because of various factors such as saturation effects the effect of the machine leakage impedance the response of the machine's excitation system and so on To emphasize the fundamental principles of synchronousmachine operation such effects will be neglected in the present discussion
    The adjustment of the rotor to its new angular position following a load change can be observed experimentally in the laboratory by viewing the machine rotor with stroboscopic light triggered from the applied armature voltage (thus having a flashing frequency which causes the rotor to appear stationary when it is turning at its normal synchronous speed)
    Alternatively electronic sensors can be used to determine the shaft position relative to the synchronous reference frame associated with the stator voltage The resultant signal can be displayed on an oscilloscope or recorded with a dataacquisition system
    As can be seen from Fig 11 an increase in primemover torque will result in a corresponding increase in the torque angle
    Whenbecomes 90 ° the electromechanical torque reaches its maximum value known as the pullout torque Any further increase in primemover torque cannot be balanced by a

    corresponding increase in synchronous electromechanical torque with the result that synchronism will no longer be maintained and the rotor will speed up This phenomenon is known as loss of synchronism or pulling out of step Under these conditions the generator is usually disconnected from the external electrical system by the automatic operation of circuit breakers and the prime mover is quickly shut down to prevent dangerous overspeed Note from Eq 11 that the value of the pullout torque can be increased by increasing either the field current or the resultant airgap flux However this cannot be done without limit the field current is limited by the ability to cool the field windingand the airgap flux is limited by saturation of the machine iron
    As seen from Fig 11 a similar situation occurs in a synchronous motor for which an increase in the shaft load torque beyond the pullout torque will cause the rotor to lose synchronism and thus to slow down Since a synchronous motor develops torque only at synchronous speed it cannot be started simply by the application of armature voltages of rated frequency In some cases a squirrelcage structure is included in the rotor and the motor can be started as an induction motor and then synchronized when it is close to synchronous speed
    12 ShortCircuit Characteristic and Load Loss
    A shortcircuit characteristic can be obtained by applying a threephase short circuit through suitable current sensors to the armature terminals of a synchronous machineWith the machine driven at synchronous speed the field current can be increased and a plot of armature current versus field current can be obtained This relation is known as the shortcircuit characteristic An opencircuit characteristic occ and a shortcircuit characteristic scc are shown in Fig 12
    With the armature shortcircuited Va 0 (and using the generator reference direction for current)
    (12)



    The corresponding phasor diagram is shown in Fig 13 Because the resistance is much smaller than the synchronous reactance the armature current lags the excitation voltage by very nearly 90 ° Consequently the armaturereactionmmf wave is very nearly in line with the axis of the field poles and in opposition to the field mmf as shown by phasors and representing the space waves of armature reaction and field mmf respectively
    The resultant mmf creates the resultant airgap flux wave which generates the airgap voltage equal to the voltage consumed in armature resistance and leakage reactance as an equation
    (13)
    In many synchronous machines the armature resistance is negligible and the leakage reactance is between 010 and 020 per unit a representative value is about 015 per unit That is at rated armature current the leakage reactance voltage drop is about 015 per unit From Eq 13 therefore the airgap voltage at rated armature current on short circuit is about 015 per unit ie the resultant airgap flux is only about 015 times its normal voltage value Consequently the machine is operating in an unsaturated condition The shortcircuit armature current therefore is directly proportional to the field current over the range from zero to well above rated armature current it is thus a straight line as can be seen in Fig 12
    The unsaturated synchronous reactance (corresponding to unsaturated operating conditions within the machine) can be found from the open and shortcircuit characteristics At any convenient field excitation such as Of in Fig 12 the armature current on short circuit is O'b and the unsaturated generated voltage for the same field current corresponds to Oa as read from the airgap line Note that the voltage on the airgap line should be used because the machine is assumed to be operating in an unsaturated condition If the linetoneutral voltage corresponding to Oa is and the armature current per phase corresponding to O'b is then from Eq 12 with armature resistance neglected the unsaturated synchronous reactance is
    (14)
    where the subscripts ag and sc indicate airgap line conditions and shortcircuit conditions respectively If and are expressed in per unit the synchronous reactance will be in per unit If and are expressed in rms linetoneutral volts and rms amperes per phase respectively the synchronous reactance will be in ohms per phase

    Note that the synchronous reactance in ohms is calculated by using the phase or linetoneutral voltage Often the opencircuit saturation curve is given in terms of the linetoline voltage in which case the voltage must be converted to the linetoneutral value by dividing by
    For operation at or near rated terminal voltage it is sometimes assumed that the machine is equivalent to an unsaturated one whose magnetization line is a straight line through the origin and the ratedvoltage point on the opencircuit characteristic as shown by the dashed line Op in Fig 14 According to this approximation the saturated value of the synchronous reactance at rated voltage is
    (15)
    where is the armature current O'c read from the shortcircuit characteristic at the field current Of' corresponding to on the opencircuit characteristic as shown in Fig 14 As with the unsaturated synchronous reactance if and are expressed in per unit the synchronous reactance will be in per unit If and are expressed in rms linetoneutral volts and rms amperes per phase respectivelythe synchronous reactance will be in ohms per phase This method of handling the effects of saturation which assumes that the effects of saturation can be described by a single value of saturated reactance usually gives satisfactory results when great accuracy is not required The shortcircuit ratio (SCR) is defined as the ratio of the field current required for rated voltage on open circuit to the field current required for rated armature current on short circuit That is in Fig 14
    (16)
    It can be shown that the SCR is the reciprocal of the perunit value of the saturated synchronous reactance found from Eq 15 It is common to refer to the field current Of' required to achieve ratedopencircuit voltage as AFNL (Amperes FieldNo Load) and the field current Of required to achieve ratedshortcircuit current as AFSC (Amperes Field Short Circuit) Thus the shortcircuit ratio can also be written as
    (17)
    If the mechanical power required to drive the machine is measured while the shortcircuit test is being made information can be obtained regarding the losses caused by the armature current Because the machine flux level is low under shortcircuit conditions the core loss under this condition is typically considered to be negligible The mechanical power required to drive the synchronous machine during the shortcircuit test then equals the sum of friction and windage loss (determined from the opencircuit test at zero field current) plus losses caused by the armature current The losses caused by the armature current can then be found by subtracting friction and windage from the driving power The losses caused by the shortcircuit armature current are known collectively as the shortcircuit load loss A curve showing the typical form of shortcircuit load loss plotted against armature current is shown in Fig 15 Typically it is approximately parabolic with armature current

    Figure 15 Typical form of shorcircuit load loss and stray load
    The shortcircuit load loss consists of loss in the armature winding local core losses caused by the armature leakage flux and the very small core loss caused by the resultant flux The dc resistance loss can be computed if the dc resistance is measured and corrected when necessary for the temperature of the windings during the shortcircuit test For copper conductors
    (18)
    Where and are the resistances at Celsius temperatures T and t respectively If this dc resistance loss is subtracted from the shortcircuit load loss the difference will be the loss due to skin effect and eddy currents in the armature conductors plus the local core losses caused by the armature leakage flux This difference between the shortcircuit load loss and the dc resistance loss is the additional loss caused by the alternating current in the armature It is the strayload loss described in Appendix D commonly considered to have the same value under normal load conditions as on short circuit It is a function of the armature current as shown by the curve in Fig 15
    As with any ac device the effective resistance of the armature can be computed as the power loss attributable to the armature current divided by the square of the current On the assumption that the stray load loss is a function of only the armature current the effective resistance of the armature can be determined from the short circuit load loss
    (19)

    If the shortcircuit load loss and armature current are in per unit the effective resistance will be in per unit If they are in watts per phase and amperes per phase respectively the effective resistance will be in ohms per phase Usually it is sufficiently accurate to find the value ofat rated current and then to assume it to be constant
    13 Summary
    Under steadystate operating conditions the physical picture of the operation of a polyphase synchronous machine is simply seen in terms of the interaction of two magnetic fields Polyphase currents on the stator produce a rotating magnetic flux wave while dc currents on the rotor produce a flux wave which is stationary with respect to the rotor Constant torque is produced only when the rotor rotates in synchronism with the stator flux wave Under these conditions there is a constant angular displacement between the rotor and stator flux waves and the result is a torque which is proportional to the sine of the displacement angle
    We have seen that a simple set of tests can be used to determine the significant parameters of a synchronous machine including the synchronous reactanceorTwo such tests are an opencircuit test in which the machine terminal voltage is measured as a function of field current and a shortcircuit test in which the armature is shortcircuited and the shortcircuit armature current is measured as a function of field current These test methods are a variation of a testing technique applicable not only to synchronous machines but also to any electrical system whose behavior can be approximated by a linear equivalent circuit to which Thevenin's theorem applies From a Thevenintheorem viewpoint an opencircuit test gives the internal voltage and a shortcircuit test gives information regarding the internal impedance From the more specific viewpoint of electromechanical machinery an opencircuit test gives information regarding excitation requirements core losses and (for rotating machines) friction and windage losses a shortcircuit test gives information regarding the magnetic reactions of the load current leakage impedances and losses associated with the load current such asand stray load losses The only real complication arises from the effects of magnetic nonlinearity effects which can be taken into account approximately by considering the machine to be equivalent to an unsaturated one whose magnetization curve is the straight line Op of Fig 14and whose synchronous reactance is empirically adjusted for saturation as in Eq 15
    In many cases synchronous machines are operated in conjunction with an external system which can be represented as a constantfrequency constantvoltage source known as an infinite bus Under these conditions the synchronous speed is determined by the frequency of the infinite bus and the machine output power is proportional to the product of the bus voltage the machine internal voltage (which is in tum proportional to the field excitation) and the sine of the phase angle between them (the power angle) and it is inversely proportional to the net reactance between them
    While the real power at the machine terminals is determined by the shaft power input to the machine (if it is acting as a generator) or the shaft load (if it is a motor) varying the field excitation varies the reactive power For low values of field current the machine will absorb reactive power from the system and the power angle will be large Increasing the field current will reduce the reactive power absorbed by the machine as well as the power angle At some value of field current the machine power factor will be unity and any further increase in field current will cause the machine to supply reactive power to the system
    Once brought up to synchronous speed synchronous motors can be operated quite efficiently when connected to a constantfrequency source However as we have seen a synchronous motor develops torque only at synchronous speed and hence has no starting torque To make a synchronous motor selfstarting a squirrelcage winding called an amortisseur or damper winding can be inserted in the rotor pole faces
    The rotor then comes up almost to synchronous speed by inductionmotor action with the field winding unexcited If the load and inertia are not too great the motor will pull into synchronism when the field winding is energized from a dc source
    Alternatively synchronous motors can be operated from polyphase variablefrequency drive systems In this case they can be easily started and operated quite flexibly Small permanentmagnet synchronous machines operated under such conditions are frequently referred to as brushless motors or brushlessdc motors both because of the similarity of their speedtorque characteristics to those of dc motors and because of the fact that one can view these motors as insideout dc motors with the commutation of the stator windings produced electronically by the drive electronics
    附录B英文翻译译文
    11相步电机概述
    早期步电机中励磁电流般称励磁机直流发电机提供励磁机通常步发电机轴电流通滑环接入发电机励磁绕组现代发电系统中励决定磁电流交流励磁机固态整流器提供(简单二极整流桥者相控整流器)系统中整流程定子进行整流直流电流通滑环送入转子系统称刷励磁系统作励磁机交流发电机整流系统均转子电流直接供励磁绕组需滑环
    作电压源供阻抗型负载单台步发电机说频率机械驱动机构(者原动机)转速决定发电机感应电势幅值正频率励磁电流发电机电流功率数发电机励磁电流发电机阻抗负载阻抗决定
    步发电机方便联运行实际工业化国家电力系统般数台甚数百台发电机联运行数千千米传输线发电机联起分布数千方千米广区域负载提供电否设计必性类巨系统容量已受干扰发生障时保持步性带诸技术理方面问题必须解决保证样复杂系统中机器员协调运作采种联系统根原结供电性电厂投资济性运行成
    台步发电机连接包含许步发电机巨联电网时电枢端电压频率电网固定结果电枢电流气隙空间产生步转速旋转磁场分量该步速电网频率决定稳定单电磁转矩定转子磁场必须相速度旋转说转子必须精确步速旋转单独发电机整电网分子法效影响电网电压频率正研究单台发电机者台发电机组时电网余部分成恒频恒压源然种电网通常称穷干线
    通分析连接穷干线单台发电机解步电机许重性步电机稳态性转矩方程式直观表示步电机理中惯采符号做适变换:
    (11)
    式中:
    极合成气隙磁通
    直流励磁绕组磁势
    磁轴线间电相角差
    正常稳态运行时电磁转矩施加轴机械转矩相衡发电机中原动机转矩作转子转动方推动转子磁势波超前合成气隙磁通波电磁转矩抵制转子旋转步电动机情形正相反电磁转矩作转子旋转方克服轴机械负载阻力转矩
    图11示电磁转矩变化会导致角度(称转矩角矩角)变化关系图11中曲线(称矩角特性)表示中励磁电流(转子磁势)合成气隙磁通假定常量正值转矩代表发电机运行应正值矩角旋转磁势旋转超前合成气隙磁通
    原动机转矩增时矩角必须增直电磁转矩轴机械转矩相衡适应程实际动态程转子机械转速改变般历衰减振荡程振荡中心新稳态衡点种振荡称瞬态猎振正历瞬态实际实际电机说会诸饱效应电机漏阻抗影响电机励磁系统响应等种素作导致合成磁通密度励磁绕组磁势幅值发生某变化凸显步电机运行基原理面讨中忽略类效应
    负载变化时转子新角位置调整程实验室试验方法观察电枢电压触发频闪观测仪光亮观察转子动态(闪动频率转子达步转速时趋稳)外电子传感器检测相步参考系轴位置步参考系定子电压相关联输出信号显示示波器者记录数采集系统中
    图11增加原动机转矩引起矩角相应增增加90°时电磁转矩达值该值称界转矩达界转矩点原动机转矩增加法应步电磁转矩增加衡量结果步性难维继转子会升速种现象称失步种情况发电机通常会通断路器动动作脱离外电网原动机迅速停掉防出现危险高速注意式11知界转矩值通增励磁电流者合成气隙磁通提高然种提高没限制励磁电流受限励磁绕组散热力气隙合成磁通受制电机铁心饱

    图11知步电动机种会出现类似情况轴负载转矩增加超界转矩时会引起转子失步停止步速度时步电动机会产生恒定转矩简单施加额定频率电压步电动机起动某情况转子需安装笼型绕组电动机作感应电动机起动接步速时步
    12 短路特性负载损耗
    通适电流互感器步发电机三相电枢绕组短路进行试验测短路特性试验时电机运行步速度逐渐增励磁电流电枢电流励磁电流间函数关系函数关系趁短路特性图12中occ代表开路特性scc代表短路特性

    电枢短路时Va 0(电流采发电机惯例):
    (12)
    图13应相量图电阻远步电抗电枢电流滞感应电势接90°电枢反应磁势作磁极轴线方励磁励势相反图中分代表电枢反应磁势励磁磁势相量 示
    合成磁势产生合成气隙磁通波进产生合成电压该电压等电枢电阻压降加漏抗压降:
    (13)
    许步电机中电枢电阻忽略计漏抗标幺值010~020间取典型值015说电枢电流额定值时漏抗压降标幺值约015式13知气隙线应额定电枢电流合成电压标幺值约015合成气隙磁通正常电压气隙磁通015倍电机运行饱状态短路电流0直额定电枢电流范围励磁电流成正关系曲线条直线图12示
    非饱步电抗(应电机饱运行)根开路特性短路特性求意合理励磁电流图12中Of短路特性应短路电枢电流O'b样励磁电流气隙线读应饱感应电势Oa注意假设电机运行饱状态感应电势值必须气隙线读取果应Oa线﹣中点电压应O'b相电枢电流果忽略电枢电阻式12求饱步电抗:
    (14)
    式中标agsc分线﹣中点电压(V)效值相电流(A)效值表示步电抗相欧姆值



    注意计算步电抗欧姆值时应该相电势者说线﹣中点电势值通常开路饱曲线出线﹣线电势必须化线﹣中点值
    额定点额定点附运行时吧电机成等效饱电机磁化曲线通原点开路特性额定电压点直线图14中虚线Op示根假设额定电压 时步电抗饱值:
    (15)
    式中:短路特性读取电枢电流O'c读取方法:图14示开路特性读取应励磁电流Of'短路特性取应励磁电流Of'电枢电流O'c饱步电抗样标幺值步电抗标幺值分线﹣中点电压相电流效值步电抗相欧姆值种饱电抗表示饱效应方法精度求高时效果令满意

    开路特性应额定电压励磁电流短路特性应额定电流励磁电流值定义短路(SCR)图14中:
    (16)
    推出短路式15饱步电抗标幺值倒数通常达额定空载电压需励磁电流Of'记AFNL (Amperes FieldNo Load)额定短路电流Of需励磁电流AFSC(Amperes Field Short Circuit)短路写成:
    (17)
    进行短路实验时果测驱动电机机械功率该功率电枢电流引起损耗信息短路运行时电机磁通铁心损耗通常忽略计稳态短路时驱动步电机机械功率等摩擦损耗风阻损耗(两损耗零励磁电流开路试验中求)加电枢电流引起损耗电枢电流引起损耗通输入机械功率减摩擦损耗风阻损耗短路电枢电流引起损耗通常统称短路负载损耗图15示出短路负载损耗电枢电流间典型函数曲线通常电枢电流间关系似抛物线

    短路负载损耗包括电枢电阻损耗电枢漏磁通引起局部铁心损耗合成磁通引起铁心损耗测直流电阻值果需根短路试验时测取绕组温度该电阻值加校正计算出直流电阻损耗铜导体说:
    (18)
    式中分摄氏温度Tt时电阻值果短路负载损耗中减直流电阻损耗差集肤效应涡流电枢导体中引起损耗加电枢漏磁通引起局部铁心损耗短路负载损耗直流电阻损耗差电枢中交变电流引起附加损耗损耗附录D描述负载杂散损耗通常认额定负载短路运行时损耗相等电枢电流函数图510曲线示
    交流装置样电枢绕组等效电阻该电枢电流时功率损耗电流方假设杂散负载损耗仅电枢电流函数时短路负载损耗求电枢绕组等效电阻:
    (19)
    果短路负载损耗电枢电流标幺值表示等效电阻标幺值果短路负载损耗实际相值表示电枢电流实际安培值表示等效电阻相欧姆值通常额定电流时求具足够精度假设常数
    59 结
    稳态运行时相步发电机运行物理特征简单两磁场间相互作解释定子相电流产生旋转磁通波转子直流励磁电流会产生相转子恒定磁通波转子定子磁通波步旋转时会产生恒定转矩种情况转子定子磁通波间具恒定角位移结果产生转矩正该角位移正弦值
    已知道组简单试验确定步电机效参数例步电抗中两试验开路试验短路试验开路实验测电机端电压励磁电流间函数关系短路试验时电枢绕组短路测电枢短路电流励磁电流间函数关系试验方法种测试技术特例仅步电机戴维南线性等效电路似表示性态电气设备适戴维南定理开路试验出电势短路试验出阻抗信息具体电机说开路试验出相励磁损耗铁心损耗摩擦损耗风阻损耗(旋转电机言)等信息短路试验出关负载电流磁场反作漏阻抗负载电流相关损耗杂散电流等信息真正问题复杂化磁场非线性影响通电机等效成饱电机似考虑非线性效应该等效饱电机磁化曲线图14中直线Op步电抗验调整式15饱值
    许场合步电机接恒频恒压穷干线运行时步电机转速干线频率决定输出功率正干线电压电机电势(然正励磁电流)相角差(功角)正弦积反干线电压电势间净电抗值
    电机端口功功率轴输入功率(果作发电机)者轴负载(果作电动机)决定改变励磁电流调节功功率励磁电流较时电机干线吸收功功率功角较增励磁电流会减少电机吸收功功率电机功角达定励磁电流时电机功率数会变成1继续增加励磁电流会导致电机干线输送功功率
    旦拉入步接恒频电源步电动机效运行然知道步转速时步电动机会产生恒定转矩步电动机没起动转矩步电动机够起动转子极面安装称阻尼器(者阻尼绕组)笼型绕组加励磁情况阻尼绕组产生感应电动力矩转子加速接步速果负载电机惯性太励磁绕组加直流励磁时电动机会拉入步
    外步电动机相变频驱动系统中中场合容易起动操作灵活种系统中型永磁步电机通常称刷电动机者刷直流电动机原二:速度转矩特性类似直流电机二该电机完全成种直流电动机励磁绕组位转子电枢绕组通开关器件进行电子换
    附录C 仿真系统登录界面代码
    function varargout dl(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @dl_OpeningFcn
    'gui_OutputFcn' @dl_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1}) 输入参数判断处理
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout 输出参数判断处理
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end

    function dl_OpeningFcn(hObject eventdata handles varargin)
    handlesoutput hObject 选择默认命令行输出
    set(handlesdl_user'String''') dl_user文框容清空
    set(handlesdl_code'String''') dl_code文框容清空
    handlesxinghao ''
    handlesuser'gyl'
    handlescode'000'
    guidata(hObject handles) 更新句柄结构
    haaxes('units''normalized''position'[0 0 1 1]) 设置界面背景
    uistack(ha'down')
    IIimread('02jpg')
    image(II)
    colormap gray
    set(ha'handlevisibility''off''visible''off')
    javaFrame get(hObject 'JavaFrame') 更改图标
    javaFramesetFigureIcon(javaxswingImageIcon('熊jpg'))
    function varargout dl_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput 句柄结构获默认命令行输出
    function dl_user_Callback(hObject eventdata handles)
    function dl_user_CreateFcn(hObject eventdata handles)
    if ispc&&isequal(get(hObject’ BackgroundColor’))
    get(0'defaultUicontrolBackgroundColor'))
    set(hObject'BackgroundColor''white')
    end

    function dl_code_Callback(hObject eventdata handles)
    function dl_code_CreateFcn(hObject eventdata handles)
    set(hObject'UserData''')
    set(hObject'String''')
    if ispc&&isequal(get(hObject’ BackgroundColor’))
    get(0'defaultUicontrolBackgroundColor'))
    set(hObject'BackgroundColor''white')
    end
    function pushbutton1_Callback(hObject eventdata handles) 登录钮callback
    passChar get(handlesdl_code'UserData') 密码文框UserData
    userChar get(handlesdl_user'String') 密码文框String
    if strcmp(passCharhandlescode)&strcmp(userCharhandlesuser) 密码户验证正确
    msgbox('欢迎进入步发电机仿真系统')
    close(gcf) 关闭消息框
    delete(dl) 关闭登录界面
    fangzhenjiemian 进入仿真界面
    else
    errordlg('户名密码错误请重新输入''错误提示''warn')
    set(handlesdl_user'String''') dl_user文框容清空
    set(handlesdl_code'String''''UserData''')清空密码框容UserData
    end
    function dl_code_KeyPressFcn(hObject eventdata handles)
    currChar get(gcf'CurrentCharacter')前键盘输入容
    oldChar get(hObject'UserData')密码框UserData
    xinghaoget(hObject'string')
    userCharget(handlesdl_user'string')
    if (currChar>'0'&currChar<'9')|(currChar>'a'&currChar<'z')
    |(currChar>'A'&currChar<'Z') 数字键字母键
    oldChar [oldChar currChar]
    xinghao[handlesxinghao '*']
    set(hObject'UserData'oldChar'string'xinghao)
    handlesxinghaoxinghao
    guidata(hObjecthandles)
    elseif double(currChar)26|double(currChar)8 补者退格键
    oldChar''
    handlesxinghao''
    set(hObject'UserData'oldChar'string'handlesxinghao)
    guidata(hObjecthandles)
    elseif double(currChar)13 回车键
    set(hObject'string'xinghao)
    if strcmp(oldCharhandlescode)&strcmp(userCharhandlesuser)
    msgbox('欢迎进入步发电机仿真系统')
    delete(gcf)
    delete(dl)
    fangzhenjiemian
    else
    set(hObject'string''''UserData''')
    handlesxinghao''
    guidata(hObjecthandles)
    errordlg('户名密码错误请重新输入''错误提示''warn')
    end
    else
    set(hObject'UserData'oldChar)
    set(hObject'string'handlesxinghao)
    end

    function pushbutton2_Callback(hObject eventdata handles) 退出钮
    exit 退出
    附录D 仿真界面代码
    function varargout fangzhenjiemian(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @fangzhenjiemian_OpeningFcn
    'gui_OutputFcn' @fangzhenjiemian_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1}) 输入参数判断处理
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout 输出参数判断处理
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function fangzhenjiemian_OpeningFcn(hObject eventdata handles varargin)
    handlesoutput hObject 选择默认命令行输出
    guidata(hObject handles) 更新句柄结构
    axes(handlesaxes2) 控件坐标轴axes2置前
    imshow(imread('jiemianjpg')) axes2显示图片jiemian
    function varargout fangzhenjiemian_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput 句柄结构获默认命令行输出
    function pushbutton1_Callback(hObject eventdata handles) 功角特性钮
    msgbox({'步发电机功角特性指保持转速' 弹出消息框
    'n励磁电流If电枢电压常数时'
    '步发电机电磁功率功率角关系'
    '该实验隐极发电机进行仿真'}'help')
    pause(2) 延迟2秒
    delete(gcf) 关闭消息框
    gongjiaotexing 进入gongjiaotexing界面
    function pushbutton2_Callback(hObject eventdata handles) 单相短路钮
    msgbox({'单相短路步发电机a相中点短路'
    '假设短路前空载运行短路a相电'
    '压0bc相电流0'}'help')
    pause(2)
    delete(gcf)
    danxiangduanlu 进入danxiangduanlu界面
    function pushbutton3_Callback(hObject eventdata handles)两相空载短路钮
    msgbox({'两线短路步发电机bc相间短路'
    '短路前空载运行'}'help')
    pause(2)
    delete(gcf)
    liangxiangkongzaiduanlu 进入liangxiangkongzaiduanlu界面
    function pushbutton4_Callback(hObject eventdata handles)空载建立电压钮
    msgbox({'空载建立电压仿真原动机带动发电'
    '机步转速运行励磁绕组通适'
    '励磁电流电枢绕组带负载时运行'
    '情况转矩转速(转差率)间函数关系'}'help')
    pause(2)
    delete(gcf)
    kz 进入kz界面
    function pushbutton5_Callback(hObject eventdata handles)三相突然短路钮
    msgbox({'发电机突然三相短路电力系统严重'
    '障电机身相关电气设备'
    '产生严重影响研究着重意义'}'help')
    pause(2)
    delete(gcf)
    sanxiangduanlu 进入sanxiangduanlu 界面
    function pushbutton6_Callback(hObject eventdata handles)
    msgbox({'步发电机根电磁感应原理工作'
    '通转子磁场定子绕组相运动'
    '实验重'}'help')
    pause(2)
    delete(gcf)
    zhuanziraozuduanlu 进入zhuanziraozuduanlu界面
    function shutkey_Callback(hObject eventdata handles)
    function instruction_Callback(hObject eventdata handles)
    function help_Callback(hObject eventdata handles)
    winopen('仿真说明txt') 开默认路径txt文仿真说明
    function exit_Callback(hObject eventdata handles)
    exit
    function gongjiao_1_Callback(hObject eventdata handles)
    gongjiaotexing
    function danxiang_2_Callback(hObject eventdata handles)
    danxiangduanlu
    function liangxiang_3_Callback(hObject eventdata handles)
    liangxiangkongzaiduanlu
    function kongzai_4_Callback(hObject eventdata handles)
    kz
    function sanxiang_5_Callback(hObject eventdata handles)
    sanxiangduanlu
    function zhuanding_6_Callback(hObject eventdata handles)
    zhuanziraozuduanlu
    function pushbutton8_Callback(hObject eventdata handles)
    exit附录E子界面步发电机状态微分方程源程序
    1隐极步发电机功角特性仿真源程序
    (1)子界面源程序
    function varargout gongjiaotexing(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @gongjiaotexing_OpeningFcn
    'gui_OutputFcn' @gongjiaotexing_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1}) 输入参数判断处理
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout 输出参数判断处理
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function gongjiaotexing_OpeningFcn(hObject eventdata handles varargin)
    handlesoutput hObject 选择默认命令行输出
    guidata(hObject handles) 更新句柄结构
    if strcmp(get(hObject'Visible')'off')
    m1str2num(get(handlesedit1'String')) edit1String转换数字赋m1
    R1str2num(get(handlesedit2'String')) edit2String 转换
    CphiNstr2num(get(handlesedit3'String')) edit3String转换
    Unstr2num(get(handlesedit4'String')) edit4String转换
    Snstr2num(get(handlesedit5'String')) edit5String转换
    Xsstr2num(get(handlesedit6'String')) edit5String转换
    gongjiao
    end
    function varargout gongjiaotexing_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput
    function pushbutton1_Callback(hObject eventdata handles)
    [fp]uiputfile({'*jpg'}'Save picture') 开保存保存位置
    strstrcat(pf)
    pixgetframe(handlesaxes1)
    imwrite(pixcdatastr'jpg') axes图片写入jpg格式中
    function edit1_Callback(hObject eventdata handles)
    function edit1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit2_Callback(hObject eventdata handles)
    function edit2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit3_Callback(hObject eventdata handles)
    function edit3_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit4_Callback(hObject eventdata handles)
    function edit4_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit5_Callback(hObject eventdata handles)
    function edit5_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit6_Callback(hObject eventdata handles)
    function edit6_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end

    function pushbutton2_Callback(hObject eventdata handles)关闭窗口钮
    qquestdlg('确定关闭窗口''关闭窗口''关闭''取消'2)
    if strcmp(q'关闭')
    delete(gcf) 关闭前提问话框
    end
    function pushbutton3_Callback(hObject eventdata handles)退出系统钮
    aquestdlg('确定退出系统''退出系统''退出系统''取消'2)
    if strcmp(a'退出系统')
    exit
    end
    function pushbutton4_Callback(hObject eventdata handles) 更新参数钮
    m1str2num(get(handlesedit1'String'))
    R1str2num(get(handlesedit2'String'))
    CphiNstr2num(get(handlesedit3'String'))
    Unstr2num(get(handlesedit4'String'))
    Snstr2num(get(handlesedit5'String'))
    Xsstr2num(get(handlesedit6'String'))
    axes(handlesaxes1)
    cla
    gongjiao
    (2)该子界面调M文件gongjiao源程序:
    U1Unsqrt(3)*10^3 计算定子额定相电压
    InSnsqrt(3)Un 计算定子额定电流
    I1In 定子额定电流I时变量
    phiNacos(CphiN) 计算功率角
    SphiNsqrt(1CphiN^2) 计算应角度正弦值
    P2NSn*CphiN 计算输出功
    PeNP2N 计算额定电磁功率
    Q2NSn*SphiN 计算输出功功率
    E0U1+j*7*(I1*cos(1*phiN)+j*I1*sin(1*phiN)) 计算励磁电动势
    E0rabs(E0) 励磁电动势E0效值
    E0aangle(E0) 励磁电动势E0相角
    EE0aUU1XXsII1 中间变量
    th0001pi 功率角变化范围0间隔001
    RR1
    Pe3*E*(R*ER*U*cos(th)+X*U*sin(th))(R*R+X*X) 计算电磁功率
    plot(thPe'k') 画功角特性曲线
    text(3350strcat('R1'num2str(R)'\Omega')'Color''black')标注曲线应电阻值
    hold on
    RR1*10
    Pe3*E*(R*(EU*cos(th))+X*U*sin(th))(R*R+X*X)
    plot(thPe'r')
    text(281000strcat('R1'num2str(R)'\Omega')'Color''blue')
    Peo3*E*U*sin(th)X
    plot(thPeo'm')
    text(051300'R10\Omega''Color''magenta')
    xlabel('功率角\thetarad')
    ylabel('电磁功率PekW')
    title('隐极步发电机功角特性')
    2三相步发电机空载建立电压仿真源程序
    ()子界面源程序
    function varargout kz(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @kz_OpeningFcn
    'gui_OutputFcn' @kz_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1})
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function kz_OpeningFcn(hObject eventdata handles varargin)
    handlesoutput hObject
    guidata(hObject handles)
    if strcmp(get(hObject'Visible')'off')
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[00000]
    [ty]ode113('kongzaiyouzuni'[t0tf]y0)
    plot(ty(3)'b')
    xlabel('Time[s]')
    ylabel('Ifd(A)')
    title('步发电机空载建立电压阻尼仿真结果')
    end
    function varargout kz_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput
    function popupmenu1_Callback(hObject eventdata handles)
    axes(handlesaxes1)
    cla
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    switch get(handlespopupmenu1 'Value')
    case 1
    set(handlesedit3'String''[00000]')
    y0[00000]
    [ty]ode113('kongzaiyouzuni'[t0tf]y0)
    plot(ty(3)'b')
    xlabel('Time[s]')
    ylabel('Ifd(A)')
    title('步发电机空载建立电压阻尼仿真结果')
    case 2
    set(handlesedit3'String''[000]')
    y0[000]
    [ty]ode113('kongzaiwuzuni'[t0tf]y0)
    plot(ty(3)'r')
    xlabel('Time[s]')
    ylabel('Ifd(A)')
    title('步发电机空载建立电压阻尼仿真结果')
    end
    function pushbutton1_Callback(hObject eventdata handles)
    [fp]uiputfile({'*jpg'}'Save picture')
    strstrcat(pf)
    pixgetframe(handlesaxes1)
    imwrite(pixcdatastr'jpg')
    function pushbutton2_Callback(hObject eventdata handles)
    qquestdlg('确定关闭窗口''关闭窗口''关闭''取消'2)
    if strcmp(q'关闭')
    delete(gcf)
    end
    function pushbutton3_Callback(hObject eventdata handles)
    aquestdlg('确定退出系统''退出系统''退出系统''取消'2)
    if strcmp(a'退出系统')
    exit
    end
    function edit1_Callback(hObject eventdata handles)
    function edit1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit2_Callback(hObject eventdata handles)
    function edit2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit3_Callback(hObject eventdata handles)
    function edit3_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton5_Callback(hObject eventdata handles)
    popupmenu1_Callback(hObject eventdata handles)
    (2)该子界面调阻尼情况M文件kongzaiyouzuni:
    Function dydt f(ty) 定义微分方程函数
    电机基参数数设置
    R29069rfd59013e01rkd11900rkq20081ufd24w377l130892e01lmd32164
    lmq97153e01l1fd30712e01l1kd49076e01l1kq10365
    Ldlmd+l1lqlmq+l1mafd0lmdmakd0lmdmakq0lmqlfdl1fd+lmdlkdl1kd+lmdlkql1kq+lmqmfkdlmd
    L[ld0lmdlmd0 输入电感系数矩阵
    0lq00lmq
    lmd0lfdlmd0
    lmd0lmdlkd0
    0lmq00lkq]
    G[0lq0032*makq0
    ld0mafd0makd00
    00000
    00000
    00000]
    R[r0000 输入电阻系数矩阵
    0r000
    00rfd00
    000rkd0
    0000rkq]
    Udq0[00ufd00]' 输入电压量
    Dydtl\(udq0w*g*yr*y) 列写微分方程
    (3)该子界面调阻尼情况M文件kongzaiwuzuni:
    function dydt f(ty)
    r29069Rfd59013E01Rkd11900Rkq20081Ufd24w377L130892E01
    Lmd32164Lmq97153E01L1fd30712E01L1kd49076E01L1kq10365
    LdLmd+L1LqLmq+L1Mafd0LmdMakd0LmdMakq0LmqLfdL1fd+LmdLkdL1kd+LmdLkqL1kq+LmqMfkdLmd
    L[Ld0Lmd 输入电感系数矩阵
    0Lq0
    Lmd0Lfd]
    G[0Lq0
    Ld0Mafd0
    000]
    R[r00 输入电阻系数矩阵
    0r0
    00Rfd]
    Udq0[00Ufd]' 输入电压量
    dydtL\(Udq0w*G*yR*y) 列写微分方程
    3步发电机单相突然短路仿真源程序
    (1)子界面源程序
    function varargout danxiangduanlu(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @danxiangduanlu_OpeningFcn
    'gui_OutputFcn' @danxiangduanlu_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1})
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function danxiangduanlu_OpeningFcn(hObject eventdata handles varargin)
    if strcmp(get(hObject'Visible')'off')
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0eval(get(handlesedit3'String'))
    [ty]ode113('danxiang'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然单相短路阻尼Ifd变化规律')
    end
    handlesoutput hObject
    guidata(hObject handles)
    function varargout danxiangduanlu_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput
    function popupmenu1_Callback(hObject eventdata handles)
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    set(handlespopupmenu2'Value'1)
    axes(handlesaxes1)
    cla
    valueget(hObject'value')
    switch value
    case 1
    set(handlesedit3'String''[140000]')
    str{'Ifd变化规律''Ikd变化规律''Ibeta0变化规律'}
    set(handlespopupmenu2'String'str)
    y0eval(get(handlesedit3'String'))
    [ty]ode113('danxiang'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然单相短路阻尼Ifd变化规律')
    case 2
    set(handlesedit3'String''[1400]')
    str{'Ifd变化规律''Ibeta0变化规律'}
    set(handlespopupmenu2'String'str)
    y0eval(get(handlesedit3'String'))
    [ty]ode113('danxiangduanwu'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然单相短路阻尼Ifd变化规律')
    end
    function popupmenu1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function popupmenu2_Callback(hObject eventdata handles)
    axes(handlesaxes1)
    cla
    hhget(handlespopupmenu1'value')
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0eval(get(handlesedit3'String'))
    Varget(handlespopupmenu2'value')
    switch hh
    case 1
    [ty]ode113('danxiang'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然单相短路阻尼Ifd变化规律')
    case 2
    plot(ty(2))
    xlabel('Time[s]')
    ylabel('Ikd[A]')
    title('步发电机突然单相短路阻尼Ikd变化规律')
    case 3
    plot(ty(4))
    xlabel('Time[s]')
    ylabel('Ibeta0[A]')
    title('步发电机突然单相短路阻尼Ibeta0变化规律')
    end
    case 2
    [ty]ode113('danxiangduanwu'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然单相短路阻尼Ifd变化规律')
    case 2
    plot(ty(2))
    xlabel('Time[s]')
    ylabel('Ibeta0[A]')
    title('步发电机突然单相短路阻尼Ibeta0变化规律')
    end
    end
    function popupmenu2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton1_Callback(hObject eventdata handles)
    [fp]uiputfile({'*jpg'}'Save picture')
    strstrcat(pf)
    pixgetframe(handlesaxes1)
    imwrite(pixcdatastr'jpg')
    function edit1_Callback(hObject eventdata handles)
    function edit1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit2_Callback(hObject eventdata handles)
    function edit2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit3_Callback(hObject eventdata handles)
    function edit3_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton2_Callback(hObject eventdata handles)
    qquestdlg('确定关闭窗口''关闭窗口''关闭''取消'2)
    if strcmp(q'关闭')
    delete(gcf)
    end
    function pushbutton3_Callback(hObject eventdata handles)
    aquestdlg('确定退出系统''退出系统''退出系统''取消'2)
    if strcmp(a'退出系统')
    exit
    end
    function pushbutton4_Callback(hObject eventdata handles)
    popupmenu1_Callback(hObject eventdata handles)
    (2)该子界面调阻尼状态M文件danxiang:
    function dydtf(ty)
    r026Rfd013Rkd00224Rkq002Ufd178876w314L1114E3Lmd137E3
    Lmq110E3L1fd21E3L1kd14E3L1kq1E3
    LdLmd+L1LqLmq+L1LfdL1fd+Lmd
    LkdL1kd+LmdLkqL1kq+LmqL0L1
    L[LfdLmd02*Lmd*cos(w*t)
    LmdLkd02*Lmd*cos(w*t)
    00Lkq2*Lmq*sin(w*t)
    Lmd*cos(w*t)Lmd*cos(w*t)Lmq*sin(w*t)(Ld+Lq+L0)+(LdLq)2*cos(2*w*t)]
    G[0002*Lmd*sin(w*t)
    0002*Lmd*sin(w*t)
    0002*Lmq*cos(w*t)
    Lmd*sin(w*t)Lmd*sin(w*t)Lmq*cos(w*t)2*(LdLq)*sin(2*w*t)]
    R[Rfd000
    0Rkd00
    00Rkq0
    0003*r]
    Udq0[Ufd000]' 输入电压量
    dydtL\(Udq0w*G*yR*y) 列写微分方程
    (3)该子界面调阻尼状态M文件danxiangduanwu:
    function dydtf(ty)
    r26Rfd013Rkd00224Rkq002ufd178876w314Ll114e3
    Lmd137e3Lmq110e3Llfd21e3Llkd14e3Llkq1e3
    LfdLlfd+LmdLkdLlkd+LmdLkqLlkq+LmqLdLmd+LlLqLmq+LlL0Ll
    L[ Lfd 2*Lmd*cos(w*t)
    Lmd*cos(w*t) (Ld+Lq+L0)+(LdLq)2*cos(2*w*t)]
    G[ 0 2*Lmd*sin(w*t)
    Lmd*sin(w*t) 2*(LdLq)*sin(2*w*t)]
    R[ Rfd 0
    0 3*r]
    Uabc[ufd0]'
    dydtL\(Uabcw*G*yR*y)
    4步发电机三相突然短路仿真源程序
    (1)子界面源程序
    function varargout sanxiangduanlu(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @sanxiangduanlu_OpeningFcn
    'gui_OutputFcn' @sanxiangduanlu_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1})
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function sanxiangduanlu_OpeningFcn(hObject eventdata handles varargin)
    if strcmp(get(hObject'Visible')'off')
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[200000]
    [ty]ode45('sanxiangduanluzuni'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机三相突然短路阻尼Id变化规律')
    end
    handlesoutput hObject
    guidata(hObject handles)
    function varargout sanxiangduanlu_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput
    function popupmenu1_Callback(hObject eventdata handles)
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    set(handlespopupmenu2'Value'1)
    axes(handlesaxes1)
    cla
    valueget(hObject'value')
    switch value
    case 1
    str{'[200000]'}
    set(handlesedit3'String'str)
    str{'Id变化规律''Ifd变化规律''Ia变化规律'}
    set(handlespopupmenu2'String'str)
    y0[200000]
    [ty]ode113('sanxiangduanluzuni'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机三相短路阻尼Id变化规律')

    case 2
    str{'[0010]'}
    set(handlesedit3'String'str)
    str{'Id变化规律''Ifd变化规律''Ia变化规律'}
    set(handlespopupmenu2'String'str)
    y0[0010]
    [ty]ode113('sanxiangduanwu'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机三相短路阻尼Id变化规律')
    end
    function popupmenu1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function popupmenu2_Callback(hObject eventdata handles)
    axes(handlesaxes1)
    cla
    Varget(handlespopupmenu2'value')
    hhget(handlespopupmenu1'value')
    switch hh
    case 1
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[200000]
    [ty]ode113('sanxiangduanluzuni'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机三相短路阻尼Id变化规律')
    case 2
    plot(ty(3))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机三相短路阻尼Ifd变化规律')
    case 3
    w314
    iay(1)*sin(w*t)+y(2)*cos(w*t)
    plot(tia)
    xlabel('Time[s]')
    ylabel('Ia[A]')
    title('步发电机三相短路阻尼Ia变化规律')
    end
    case 2
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[0010]
    [ty]ode113('sanxiangduanwu'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机三相短路阻尼Id变化规律')
    case 2
    plot(ty(3))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机三相短路阻尼Ifd变化规律')
    case 3
    w314
    iay(1)*sin(w*t)+y(2)*cos(w*t)
    plot(tia)
    xlabel('Time[s]')
    ylabel('Ia[A]')
    title('步发电机三相短路阻尼Ia变化规律')
    end
    end
    function popupmenu2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton1_Callback(hObject eventdata handles)
    qquestdlg('确定关闭窗口''关闭窗口''关闭''取消'2)
    if strcmp(q'关闭')
    delete(gcf)
    end
    function savepicture_Callback(hObject eventdata handles)
    [fp]uiputfile({'*jpg'}'Save picture')
    strstrcat(pf)
    pixgetframe(handlesaxes1)
    imwrite(pixcdatastr'jpg')
    function edit1_Callback(hObject eventdata handles)
    function edit1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit2_Callback(hObject eventdata handles)
    function edit2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit3_Callback(hObject eventdata handles)
    function edit3_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton3_Callback(hObject eventdata handles)
    aquestdlg('确定退出系统''退出系统''退出系统''取消'2)
    if strcmp(a'退出系统')
    exit
    end
    function edit4_Callback(hObject eventdata handles)
    function edit4_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton4_Callback(hObject eventdata handles)
    popupmenu2_Callback(hObject eventdata handles)
    (2)该子界面调阻尼状态M文件sanxiangduanluzuni
    function dydt f(ty) 面输入电机基参数数
    r29069Rfd59013E01Rkd11900Rkq20081Ufd24w314L130892E01
    Lmd32164Lmq97153E01L1fd30712E01L1kd49076E01L1kq10365
    LdLmd+L1LqLmq+L1Mafd0LmdMakd0LmdMakq0LmqLfdL1fd+LmdLkdL1kd+LmdLkqL1kq+LmqMfkdLmd
    L[Ld0LmdLmd0 输入电感矩阵
    0Lq00Lmq
    Lmd0LfdLmd0
    Lmd0LmdLkd0
    0Lmq00Lkq]
    G[0Lq0032*Makq0
    Ld0Mafd0Makd00
    00000
    00000
    00000]
    R[r0000 输入电阻矩阵
    0r000
    00Rfd00
    000Rkd0
    0000Rkq]
    Udq0[10002400]' 输入电压量
    dydtL\(Udq0w*G*yR*y) 列写微分方程
    (3)该子界面调阻尼状态M文件sanxiangduanwu:
    function dydt f(ty) 面输入电机基参数数
    r29069Rfd59013E01Rkd11900Rkq20081Ufd24w314L130892E01Lmd32164Lmq97153E01L1fd30712E01L1kd49076E01L1kq10365
    LdLmd+L1LqLmq+L1Mafd0LmdMakd0LmdMakq0LmqLfdL1fd+LmdLkdL1kd+LmdLkqL1kq+LmqMfkdLmd
    L[Ld0Lmd 输入电感矩阵
    0Lq0
    Lmd0Lfd]
    G[0Lq0
    Ld0Mafd0
    000]
    R[r00 输入电阻矩阵
    0r0
    00Rfd]
    Udq0[1001024]' 输入电压量
    dydtL\(Udq0w*G*yR*y) 列写微分方程
    5步发电机突然两相空载短路仿真源程序
    (1)子界面源程序
    function varargout liangxiangkongzaiduanlu(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @liangxiangkongzaiduanlu_OpeningFcn
    'gui_OutputFcn' @liangxiangkongzaiduanlu_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1})
    gui_Stategui_Callback str2func(varargin{1})
    end

    if nargout
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function liangxiangkongzaiduanlu_OpeningFcn(hObject eventdata handles varargin)
    if strcmp(get(hObject'Visible')'off')
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[140000]
    [ty]ode113('liangxiangduanlu'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然两相空载短路阻尼Ifd变化规律')
    end
    handlesoutput hObject
    guidata(hObject handles)
    function varargout liangxiangkongzaiduanlu_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput
    function edit1_Callback(hObject eventdata handles)
    function edit1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit2_Callback(hObject eventdata handles)
    function edit2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit3_Callback(hObject eventdata handles)
    function edit3_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton1_Callback(hObject eventdata handles)
    popupmenu2_Callback(hObject eventdata handles)
    function pushbutton2_Callback(hObject eventdata handles)
    [fp]uiputfile({'*jpg'}'Save picture')
    strstrcat(pf)
    pixgetframe(handlesaxes1)
    imwrite(pixcdatastr'jpg')
    function pushbutton3_Callback(hObject eventdata handles)
    qquestdlg('确定关闭窗口''关闭窗口''关闭''取消'2)
    if strcmp(q'关闭')
    delete(gcf)
    end
    function pushbutton4_Callback(hObject eventdata handles)
    aquestdlg('确定退出系统''退出系统''退出系统''取消'2)
    if strcmp(a'退出系统')
    exit
    end
    function popupmenu1_Callback(hObject eventdata handles)
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    set(handlespopupmenu2'Value'1)
    axes(handlesaxes1)
    cla
    valueget(hObject'value')
    switch value
    case 1
    str{'[140000]'}
    set(handlesedit3'String'str)
    str{'Ifd变化规律''Ikd变化规律''Ibeta0变化规律'}
    set(handlespopupmenu2'String'str)
    y0[140000]
    [ty]ode113('liangxiangduanlu'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机突然两相短路阻尼Ifd变化规律')

    case 2
    str{'[1400]'}
    set(handlesedit3'String'str)
    str{'Ifd变化规律''Ibeta0变化规律'}
    set(handlespopupmenu2'String'str)
    y0[1400]
    [ty]ode113('liangxiangkongzaiduanwu'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ibeta0[A]')
    title('步发电机突然两相短路阻尼Ifd变化规律')
    end
    function popupmenu1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function popupmenu2_Callback(hObject eventdata handles)
    axes(handlesaxes1)
    cla
    Varget(handlespopupmenu2'value')
    hhget(handlespopupmenu1'value')
    switch hh
    case 1
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[140000]
    [ty]ode113('liangxiangduanlu'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机单相突然短路阻尼Ifd变化规律')
    case 2
    plot(ty(2))
    xlabel('Time[s]')
    ylabel('Ikd[A]')
    title('步发电机单相突然短路阻尼Ikd变化规律')
    case 3
    plot(ty(4))
    xlabel('Time[s]')
    ylabel('Ibeta0[A]')
    title('步发电机单相突然短路阻尼Ibeta0变化规律')
    end
    case 2
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[1400]
    [ty]ode113('liangxiangkongzaiduanwu'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机单相突然短路阻尼Ifd变化规律')
    case 2
    plot(ty(2))
    xlabel('Time[s]')
    ylabel('Ibeta0[A]')
    title('步发电机单相突然短路阻尼Ibeta变化规律')
    end
    end
    function popupmenu2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    (2)该子界面调阻尼状态M文件liangxiangduanlu:
    function dydtf(ty)
    面输入电机基数:
    r26Rfd013Rkd00224Rkq002Ufd178876w377Ll114e3Lmd137e3
    Lmq110e3
    Llfd21e3Llkd14e3Llkq1e3
    LfdLlfd+LmdLkdLlkd+LmdLkqLlkq+LmqLdLmd+LlLqLmq+Ll
    L[ Lfd Lmd 0 Lmd*sin(w*t)
    Lmd Lkd 0 Lmd*sin(w*t)
    0 0 Lkq Lmq*cos(w*t)
    Lmd*sin(w*t)Lmd*sin(w*t)Lmq*cos(w*t)(Ld+Lq)2+(LdLq)2*cos(2*w*t)]
    G[ 0 0 0 Lmd*cos(w*t)
    0 0 0 Lmd*cos(w*t)
    0 0 0 Lmq*sin(w*t)
    Lmd*cos(w*t) Lmd*cos(w*t)Lmq*sin(w*t) (LdLq)*sin(2*w*t)]
    R[ Rfd 0 0 0+0+0
    0 Rkd 0 0+0+0
    0 0 Rkq0+0+0
    0 0 0 r]
    电压量
    Ualphabeta[178876000]'
    微分方程
    dydtL\(Ualphabetaw*G*yR*y)
    (3)该子界面调阻尼状态M文件liangxiangkongzaiduanwu:
    function dydttongbufadianji(ty)
    r26Rfd013Rkd00224Rkq002Ufd178876w377Ll114e3Lmd137e3Lmq110e3
    Llfd21e3Llkd14e3Llkq1e3
    LfdLlfd+LmdLkdLlkd+LmdLkqLlkq+LmqLdLmd+LlLqLmq+Ll
    L[ Lfd Lmd*sin(w*t)
    Lmd*sin(w*t) (Ld+Lq)2+(LdLq)2*cos(2*w*t)]
    G[ 0 Lmd*cos(w*t)
    Lmd*cos(w*t) (LdLq)*sin(2*w*t)]
    R[Rfd 0+0+0
    0 r]
    Uabc[1788760]'
    dydtL\(Uabcw*G*yR*y)
    6步发电机转子绕组短路定子突加称电压仿真源程序
    (1)界面源程序
    function varargout zhuanziraozuduanlu(varargin)
    gui_Singleton 1
    gui_State struct('gui_Name' mfilename
    'gui_Singleton' gui_Singleton
    'gui_OpeningFcn' @zhuanziraozuduanlu_OpeningFcn
    'gui_OutputFcn' @zhuanziraozuduanlu_OutputFcn
    'gui_LayoutFcn' []
    'gui_Callback' [])
    if nargin && ischar(varargin{1})
    gui_Stategui_Callback str2func(varargin{1})
    end
    if nargout
    [varargout{1nargout}] gui_mainfcn(gui_State varargin{})
    else
    gui_mainfcn(gui_State varargin{})
    end
    function zhuanziraozuduanlu_OpeningFcn(hObject eventdata handles varargin)
    if strcmp(get(hObject'Visible')'off')
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[00000]
    [ty]ode45('zhuandingzizuni'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Id变化规律')
    end
    handlesoutput hObject
    guidata(hObject handles)
    function varargout zhuanziraozuduanlu_OutputFcn(hObject eventdata handles)
    varargout{1} handlesoutput
    function popupmenu1_Callback(hObject eventdata handles)
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    set(handlespopupmenu2'Value'1)
    axes(handlesaxes1)
    cla
    valueget(hObject'value')
    switch value
    case 1
    str{'[00000]'}
    set(handlesedit3'String'str)
    str{'Id变化规律''Ifd变化规律''Ikd变化规律'}
    set(handlespopupmenu2'String'str)
    y0[00000]
    [ty]ode113('zhuandingzizuni'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Id变化规律')

    case 2
    str{'[000]'}
    set(handlesedit3'String'str)
    str{'Id变化规律''Ifd变化规律''Ia变化规律'}
    set(handlespopupmenu2'String'str)
    y0[000]
    [ty]ode113('zhuandingziwuzuni'[t0tf]y0)
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Id变化规律')
    end

    function popupmenu1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function popupmenu2_Callback(hObject eventdata handles)
    axes(handlesaxes1)
    cla
    Varget(handlespopupmenu2'value')
    hhget(handlespopupmenu1'value')
    switch hh
    case 1
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[00000]
    [ty]ode113('zhuandingzizuni'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Id变化规律')
    case 2
    plot(ty(3))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Ifd变化规律')
    case 3
    plot(ty(4))
    xlabel('Time[s]')
    ylabel('Ikd[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Ikd变化规律')
    end
    case 2
    t0str2num(get(handlesedit1'String'))
    tfstr2num(get(handlesedit2'String'))
    y0[000]
    [ty]ode113('zhuandingziwuzuni'[t0tf]y0)
    switch Var
    case 1
    plot(ty(1))
    xlabel('Time[s]')
    ylabel('Id[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Id变化规律')
    case 2
    plot(ty(3))
    xlabel('Time[s]')
    ylabel('Ifd[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Ifd变化规律')
    case 3
    w314
    iay(1)*sin(w*t)+y(2)*cos(w*t)
    plot(tia)
    xlabel('Time[s]')
    ylabel('Ia[A]')
    title('步发电机转子绕组短路定子突加称电压阻尼Ia变化规律')
    end
    end

    function popupmenu2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton1_Callback(hObject eventdata handles)
    qquestdlg('确定关闭窗口''关闭窗口''关闭''取消'2)
    if strcmp(q'关闭')
    delete(gcf)
    end
    function edit1_Callback(hObject eventdata handles)
    function edit1_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit2_Callback(hObject eventdata handles)
    function edit2_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function edit3_Callback(hObject eventdata handles)
    function edit3_CreateFcn(hObject eventdata handles)
    if ispc
    set(hObject'BackgroundColor''white')
    else
    set(hObject'BackgroundColor'get(0'defaultUicontrolBackgroundColor'))
    end
    function pushbutton2_Callback(hObject eventdata handles)
    [fp]uiputfile({'*jpg'}'Save picture')
    strstrcat(pf)
    pixgetframe(handlesaxes1)
    imwrite(pixcdatastr'jpg')
    function pushbutton3_Callback(hObject eventdata handles)
    aquestdlg('确定退出系统''退出系统''退出系统''取消'2)
    if strcmp(a'退出系统')
    exit
    end
    function pushbutton4_Callback(hObject eventdata handles)
    popupmenu2_Callback(hObject eventdata handles)
    (2)该子界面调阻尼状态M文件zhuandingzizuni:
    function dydt f(ty) 面输入电机基参数数
    r29069Rfd59013E01Rkd11900Rkq20081Ufd24w377L130892E01Lmd32164Lmq97153E01L1fd30712E01L1kd49076E01L1kq10365
    LdLmd+L1LqLmq+L1Mafd0LmdMakd0LmdMakq0LmqLfdL1fd+LmdLkdL1kd+LmdLkqL1kq+LmqMfkdLmd
    L[Ld0LmdLmd0 输入电感系数矩阵
    0Lq00Lmq
    Lmd0LfdLmd0
    Lmd0LmdLkd0
    0Lmq00Lkq]
    G[0Lq0032*Makq0
    Ld0Mafd0Makd00
    00000
    00000
    00000]
    R[r0000 输入电阻系数矩阵
    0r000
    00Rfd00
    000Rkd0
    0000Rkq]
    Udq0[1000000]' 输入电压量
    dydtL\(Udq0w*G*yR*y) 列写微分方程
    (3)该子界面调阻尼状态M文件zhuandingziwuzuni:
    function dydt f(ty) 面输入电机基参数数
    r29069Rfd59013E01Rkd11900Rkq20081Ufd24w314L130892E01Lmd32164Lmq97153E01L1fd30712E01L1kd49076E01L1kq10365
    LdLmd+L1LqLmq+L1Mafd0LmdMakd0LmdMakq0LmqLfdL1fd+LmdLkdL1kd+LmdLkqL1kq+LmqMfkdLmd
    L[Ld0Lmd 输入电感矩阵
    0Lq0
    Lmd0Lfd]
    G[0Lq0
    Ld0Mafd0
    000]
    R[r00 输入电阻矩阵
    0r0
    00Rfd]
    Udq0[10000]' 输入电压量
    dydtL\(Udq0w*G*yR*y) 列写微分方程





    文档香网(httpswwwxiangdangnet)户传

    《香当网》用户分享的内容,不代表《香当网》观点或立场,请自行判断内容的真实性和可靠性!
    该内容是文档的文本内容,更好的格式请下载文档

    下载文档到电脑,查找使用更方便

    文档的实际排版效果,会与网站的显示效果略有不同!!

    需要 8 香币 [ 分享文档获得香币 ]

    下载文档

    相关文档

    三相电压型PWM逆变电路建模与仿真毕业设计

     本 科 毕 业 设 计 题目:三相电压型PWM逆变电路建模与仿真 姓 名 学 院 信息与电气工程学院 ...

    5年前   
    2447    0

    电力电子技术课程设计报告三相桥式整流电路的MATLAB仿真

    电力电子技术课程设计报告题 目:三相桥式整流电路的MATLAB仿真院 系 信息工程学院 专 业 自动化 班 级 ...

    1年前   
    443    0

    2#发电机运行规程

        2#发电机运行规程                       编制人:*** 审核人:** 批准人:***   **正元化肥有限公司     ...

    6年前   
    1446    0

    2021年发电机安全运行规程

    2021年发电机安全运行规程一、本规程规定备用发电机在使用过程中的操作要求和注意事项,预防操作人员在设备使用中可能造成的意外伤害或事故,确保人身和设备的安全。二、本规程适用市局(公司)各单位备...

    2年前   
    744    0

    基于Matlab的三相异步电动机起动、调速和制动特性仿真

    信息工程学院专业方向设计任务书专业班级学生姓名学 号设计题目基于Matlab的三相异步电动机起动、调速和制动特性仿真设计任务书设计要求:以matlab软件为平台,搭建三相异步电动机模型,要求如...

    3年前   
    734    0

    基于matlab的电力电子仿真设计报告

    课程设计(综合实验)报告( 2010-- 2011 年度第 1 学期)名 称:电力电子技术课程设计院 系:电气与电子工程学院班 级: 电气班 学 号:...

    4年前   
    973    0

    三相桥式全控整流电路的设计课程设计

    电力电子学课程设计说明书题目: 三相桥式全控整流电路的设计 学生姓名 学号 ...

    3年前   
    738    0

    2021年发电机运行操作规程

    2021年发电机运行操作规程(1)必须是在机组未运行前进行。(2)润滑部份:检查润滑机油油位,尽量保持油位在接近油位高位置,但不可超过,只能使用本发电机指定牌子、型号的机油。(3)冷却水部分:...

    1年前   
    420    0

    柴油发电机运行管理标准作业程序

    柴油发电机运行管理标准作业程序 一、目的  规范柴油发电机运行管理工作,确保柴油发电机良好运行。  二、适用范围  适用于物业辖区内柴油发电机的运行管理。  三、职责...

    13年前   
    18148    0

    风力发电机组设计与制造课程设计报告

    《风力发电机组设计与制造》课程设计报告院 系:可再生能源学院 班 级:风能班姓 名: ...

    2年前   
    562    0

    吉普指南者悬架系统设计与仿真

    悬架是影响汽车操纵稳定性和行驶平顺性的重要部件,其开发设计水平对其作用的影响尤为重要,传统的悬架设计不仅周期长,而且成本也高。

    3年前   
    649    0

    MatlabSimulink通信系统建模与仿真课程设计

     电子信息课程设计题目: Matlab/Simulink通信 系统建模与仿真...

    3年前   
    712    0

    300MW火电机组仿真机冷态启动运行规程

    1.1. DCS系统检查1.1.1 确认各DCS操作站已送电,能正常开机,开机后运行正常。1.1.2 确认各DCS操作站的系统画面均正常,菜单与系统画面、系统画面与系统画面之间能正常切换,系统数...

    5年前   
    1289    0

    三相桥式全控整流电路课程设计报告

     电力电子技术课程设计 班级 电气 ...

    5年前   
    1997    0

    基于载波通信的三相智能电表的设计

    智能电表作为电能数据采集的基础设备,在智能电网的建设中起着非常关键的作用。智能电表要求具备原始电能数据采集、测量和数据传输的功能。随着智能电网的发展,对智能电表提出了新的要求。由于越来越多的非线...

    4年前   
    535    0

    三相鼠笼式异步电动机设计毕业设计

     本科生毕业设计任务书 (工科及部分理科专业适用) 题目:Y100L-2 3 kW 三相鼠笼异步电动机的设计 ...

    5年前   
    1336    0

    生产建模与仿真课程设计在flexsim环境下课设生产系统建模与仿真

    目 录 1 课程设计任务书........................................................ 22 平行顺序移动法..........

    3年前   
    679    0

    基于Multisim的声光控路灯控制系统设计与仿真课程设计

    信息工程学院课程设计报告书题目: 基于Multisim的声光控路灯控制系统设计与仿真 课 程:电子线路课程设计 专 业:电气工程及其自动化班 级: ...

    1年前   
    362    0

    ASK调制解调系统设计与仿真MATLAB课程设计

     XX学院 《电子信息系统仿真》课程设计 级 电子通信工程 专业 班级 题 目 2ASK调制解调系统设计与仿真 姓 ...

    5年前   
    2467    0

    基于MATLAB的CRC编码与译码的设计与仿真课程设计

    *******************实践教学*******************XX大学计算机与通信学院2012年春季学期 《计算机通信与网络》 课程设计 题 目: 差错控...

    3年前   
    784    0

    文档贡献者

    文***享

    贡献于2021-06-13

    下载需要 8 香币 [香币充值 ]
    亲,您也可以通过 分享原创文档 来获得香币奖励!
    下载文档

    该用户的其他文档