北师大版九年级下册数学1-3章单元测试卷


    第一章检测卷 时间:120分钟     满分:150分 班级:__________  姓名:__________  得分:__________                           一、选择题(每小题3分,共45分) 1.sin30°的值为( ) A. B. C. D. 2.如图,Rt△ABC中,∠C=90°,AC=8,BC=15,则tanA的值为( ) A. B. C. D. 第2题图        第3题图 3.如图,在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为( ) A.6cm B.7cm C.8cm D.9cm 4.在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是( ) A.sinA= B.tanA= C.cosB= D.tanB= 5.若tan(α+10°)=1,则锐角α的度数是A( ) A.20° B.30° C.40° D.50° 6.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC等于( ) A.3 B.300 C. D.150 7.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A,C,E在一条直线上,那么开挖点E与D的距离是( ) A.500sin55°米 B.500cos35°米 C.500cos55°米 D.500tan55°米 第7题图   第8题图   第9题图 8.如图,点P在第二象限,OP与x轴负半轴的夹角是α,且OP=5,cosα=,则点P的坐标是( ) A.(3,4) B.(-3,4) C.(-4,3) D.(-3,5) 9.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1∶2,则斜坡AB的长为( ) A.4米 B.6米 C.12米 D.24米 10.如图,直线y=x+3与x,y轴分别交于A,B两点,则cos∠BAO的值是( ) A. B. C. D. 第10题图   第11题图    11.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠B=3,则BD等于( ) A.2 B.3 C.3 D.2 12.若锐角α满足cosα<且tanα<,则α的范围是( ) A.30°<α<45° B.45°<α<60° C.60°<α<90° D.30°<α<60° 13.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是( ) A.4cm B.6cm C.8cm D.10cm 第13题图 14.如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是( ) A.(+8)m B.(8+8)m C.m D.m 第14题图       第15题图 15.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测到灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( ) A.22.48海里 B.41.68海里 C.43.16海里 D.55.63海里 二、填空题(每小题5分,共25分) 16.在Rt△ABC中,∠C=90°,∠A=60°.若AB=2,则cosB= ,BC= . 17.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB= . 第17题图     第18题图 18.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为 m(结果保留根号). 19.齐河路路通电动车厂新开发的一种电动车如图,它的大灯A射出的光线AB,AC与地面MN所夹的锐角分别为8°和10°,大灯A与地面的距离为1m,则该车大灯照亮地面的宽度BC是 m(不考虑其他因素,参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈). 第19题图     第20题图 20.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=. 三、解答题(共80分) 21.(8分)计算: (1)3tan30°+cos245°-2sin60°; (2)tan260°-2sin45°+cos60°. 22.(8分)如图,在△ABC中,∠C=90°,AB=13,BC=5,求sinB和tanB的值. 23.(10分)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C,D,B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号). 24.(12分)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°.若定义cotA==,则称它为锐角A的余切,根据这个定义解答下列问题: (1)cot30°= ; (2)已知tanA=,其中∠A为锐角,求cotA的值. 25.(12分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠BAC=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米,参考数据:≈1.414,≈1.732). 26.(14分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长; (2)sin∠ADC的值. 27.(16分)南海是我国的南大门,某天我国一艘海监执法船在南海海域正在进行常态化巡航,如图所示,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数,参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)? 下册第一章检测卷 1.A 2.D 3.C 4.D 5.A 6.D 7.C 8.B 9.B 10.A 11.A 12.B 13.A 14.D 15.B 解析:如图,过点P作PA⊥MN于点A.由题意,得MN=30×2=60(海里).∵∠MNC=90°,∠CNP=46°,∴∠MNP=∠MNC+∠CNP=136°.∵∠BMP=68°,∴∠PMN=90°-∠BMP=22°,∴∠MPN=180°-∠PMN-∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60海里.∵∠CNP=46°,∴∠PNA=44°,∴PA=PN·sin∠PNA≈60×0.6947≈41.68(海里).故选B. 16.  17. 18.(10+1) 19.1.4 20. 解析:过点E作EF⊥BC于点F.设DE=CE=a.∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°.∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a.∴BF=BC+CF=a+a=a.在Rt△BEF中,tan∠EBF==,即tan∠EBC=. 21.解:(1)原式=3×+-2×=+-=;(4分) (2)原式=()2-2×+=3-+=-.(8分) 22.解:∵在△ABC中,∠C=90°,∴AC===12.(4分)∴sinB==,(6分)tanB==.(8分) 23.解:由题意可得CD=16米.∵AB=CB·tan30°,AB=BD·tan45°,∴CB·tan30°=BD·tan45°,(4分)∴(CD+DB)×=BD×1,∴BD=(8+8)米.(7分)∴AB=BD·tan45°=(8+8)米.(9分) 答:旗杆AB的高度是(8+8)米.(10分) 24.解:(1)(4分) (2)在Rt△ABC中,∠C=90°,∵tanA==,∴可设BC=3k,则AC=4k,(8分)∴cotA===.(12分) 25.解:如图,过点A作AD⊥BC,交BC延长线于点D.(2分)∵∠B=30°,∴∠BAD=60°.又∵∠BAC=15°,∴∠CAD=45°.(5分)在Rt△ACD中,∵AC=200米,∴AD=AC·cos∠CAD=200×=100(米),(8分)∴AB===200≈283(米).(11分) 答:A,B两个凉亭之间的距离约为283米.(12分) 26.解:(1)如图,过点A作AE⊥BC于点E.∵cosC=,∴∠C=45°.(2分)在Rt△ACE中,∵CE=AC·cosC=×=1,∴AE=CE=1.(4分)在Rt△ABE中,∵tanB=,∴=,∴BE=3AE=3,∴BC=BE+CE=4;(7分) (2)由(1)可知BC=4,CE=1.∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.(9分)∵AE⊥BC,DE=AE=1,∴∠ADC=45°,(12分)∴sin∠ADC=.(14分) 27.解:如图,过点B作BD⊥AC,垂足为D.由题意得∠BAC=75°-30°=45°,AB=20海里.(3分)在Rt△ABD中,∵∠BAD=∠ABD=45°,∴BD=AD=AB=×20=10(海里).(7分)在Rt△BCD中,∵∠C=90°-75°=15°,∠CBD=90°-∠C=75°,tan∠CBD=,∴CD=BD·tan75°≈10×3.732≈52.8(海里),(11分)∴AC=AD+DC=10+52.8≈67(海里).(15分) 答:我国海监执法船在前往监视巡查点的过程中约行驶了约67海里.(16分) 第二章 单元检测卷 一、选择题(每小题3分;共33分) 1.二次函数,当y<0时,自变量x的取值范围是(  ) A. -1<x<3                             B. x<-1                             C. x>3                             D. x<-1或x>3 2.如图,双曲线y= 经过抛物线y=ax2+bx(a≠0)的顶点(﹣1,m)(m>0),则下列结论中,正确的是(   ) A. a+b=k                             B. 2a+b=0                             C. b<k<0                             D. k<a<0 3.将抛物线y=(x﹣1)2+4先向右平移4个单位长度,再向下平移3个单位长度,得到的抛物线的顶点坐标为(   ) A. (5,4)                           B. (1,4)                           C. (1,1)                           D. (5,1) 4.已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是(   ) A. m﹣1的函数值小于0                                          B. m﹣1的函数值大于0 C. m﹣1的函数值等于0                                          D. m﹣1的函数值与0的大小关系不确定 5.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为(   ) A. b=2,c=2                    B. b=2,c=0                    C. b=﹣2,c=﹣1                    D. b=﹣3,c=2 6.抛物线y=(x+2)2+3的顶点坐标是(    ) A. (-2,3)                      B. (2,3)                      C. (-2,-3)                      D. (2,-3) 7.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为(    ) A. y=(x+2)2+2               B. y=(x-2)2-2               C. y=(x-2)2+2               D. y=(x+2)2-2 8.二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下  列结论中正确的个数有(   ) ①4a+b=0;          ②9a+3b+c<0; ③若点A(﹣3,y1),点B(﹣ ,y2),点C(5,y3)在该函数图象上,则y1<y3<y2; ④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2 . A. 1个                                       B. 2个                                       C. 3个                                       D. 4个 9.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是(  ) A. 1月,2月                B. 1月,2月,3月                C. 3月,12月                D. 1月,2月,3月,12月 10.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为(   ) A. y=(x+1)2﹣13          B. y=(x﹣5)2﹣3            C. y=(x﹣5)2﹣13          D. y=(x+1)2﹣3 11.如图所示,抛物线 的对称轴是直线 ,且图像经过点 (3,0),则 的值为(   ) A. 0                                          B. -1                                          C. 1                                          D. 2 二、填空题(共10题;共30分) 12.已知二次函数y=﹣ x2﹣2x+1,当x________时,y随x的增大而增大. 13.(2014•扬州)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________. 14.农机厂第一个月水泵的产量为50(台),第三个月的产量y(台)与月平均增长率x之间的关系表示为________ . 15.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=________. 16.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是 ________   x 0.4 0.5 0.6 0.7 ax2+bx+c ﹣0.64 ﹣0.25 0.16 0.59 17.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△________ 0(填:“>”或“=”或“<”). 18.如图,抛物线 与 轴的一个交点A在点(-2,0)和(1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则 的取值范围是________. 19.形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________. 20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当2<y<5时,x的取值范围是________  x … ﹣1 0 1 2 3 … y … 10 5 2 1 2 … 21.若二次函数y=2x2﹣x﹣m与x轴有两个交点,则m的取值范围是________ . 三、解答题(共4题;共37分) 22.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数) (1)当m=0时,求该函数的零点. (2)证明:无论m取何值,该函数总有两个零点. 23.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离. (1)飞行的水平距离是多少时,球最高? (2)球从飞出到落地的水平距离是多少? 24.已知二次函数图象顶点坐标(﹣3, )且图象过点(2, ),求二次函数解析式及图象与y轴的交点坐标. 25.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B (1)求抛物线的解析式; (2)点D是第二象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD= S四边形ACBD时,求D点坐标; (3)在(2)的条件下,连接BC,过点D作DE⊥BC,交CB的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长. 参考答案 一、选择题 A C D B B A B C D D B 二、填空题 12.<﹣2 13. 0 14. 15. 3 16. 0.5<x<0.6 17.> 18. - ≤a≤- 19. y=﹣2x2﹣5 20. 0<x<1或3<x<4 21. m≥﹣ 三、解答题 22. 1)解:当m=0时,令y=0,则x2﹣6=0, 解得x=±, 所以,m=0时,该函数的零点为±; (2)证明:令y=0,则x2﹣2mx﹣2(m+3)=0, △=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3), =4m2+8m+24, =4(m+1)2+20, ∵无论m为何值时,4(m+1)2≥0, ∴△=4(m+1)2+20>0, ∴关于x的方程总有不相等的两个实数根, 即,无论m取何值,该函数总有两个零点. 23.解:(1)∵y=﹣x2+x =﹣(x﹣4)2+, ∴当x=4时,y有最大值为. 所以当球水平飞行距离为4米时,球的高度达到最大,最大高度为米; (2)令y=0, 则﹣x2+x=0, 解得x1=0,x2=8. 所以这次击球,球飞行的最大水平距离是8米. 24.解:设二次函数的解析式为y=a(x﹣h)2+k, 把h=﹣3,k= ,和点(2, )代入y=a(x﹣h)2+k,得a(2+3)2+ = , 解得a= , 所以二次函数的解析式为y= (x+3)2+ , 当x=0时,y= ×9+ = , 所以函数图象与y轴的交点坐标(0, ) 25.(1)解:∵令x=0得:y=﹣3, ∴C(0,﹣3). 令y=0得:﹣x﹣3=0,解得x=﹣3, ∴A(﹣3,0). 将A、C两点的坐标代入抛物线的解析式的: ,解得: . ∴抛物线的解析式为y=x2+2x﹣3 (2)解:如图1所示: 令y=0得:x2+2x﹣3=0,解得x=﹣3或x=1. ∴AB=4. ∵S△ACD= S四边形ACBD , ∴S△ADC:S△DCB=3:5. ∴AE:EB=3:5. ∴AE=4× = . ∴点E的坐标为(﹣ ,0). 设EC的解析式为y=kx+b,将点C和点E的坐标代入得: , 解得:k=﹣2,b=﹣3. ∴直线CE的解析式为y=﹣2x﹣3. 将y=﹣2x﹣3与y=x2+2x﹣3联立,解得:x=﹣4或x=0(舍去), 将x=﹣4代入y=﹣2x﹣3得:y=5. ∴点D的坐标为(﹣4,5) (3)解:如图2所示:过点D作DN⊥x轴,垂足为N,过点P作PM⊥x轴,垂足为M. 设直线BC的解析式为y=kx+b,将点C和点B的坐标代入得: , 解得:k=3,b=﹣3. ∴直线BC的解析式为y=3x﹣3. 设直线DE的解析式为y=﹣ x+n,将点D的坐标代入得:﹣ ×(﹣4)+n=5,解得n=5﹣ = . ∴直线DE的解析式为y=﹣ x+ . 将y=3x﹣3与y=﹣ x+ 联立解得:x=2,y=3. ∴点E坐标为(2,3). 依据两点间的距离公式可知:BC=CE= . ∵点P与点Q关于点B对称, ∴PB=BQ. 在△PCB和△QEB中 , ∴△PCB≌△QEB. ∴∠BPC=∠Q. 又∵∠DEF+∠BPC=∠DBE,∠DEF=∠QEG,∠EGB=∠Q+∠QEG ∴∠DBE=∠DGB. 又∵∠DBE+∠BDE=90°, ∴∠DGB+∠BDG=90°,即∠PBD=90°. ∵D(﹣4,5),B(1,0), ∴DM=NB. ∴∠DBN=45°. ∴∠PBM=45°. ∴PM=MB 设点P的坐标为(a,a2+2a﹣3),则BM=1﹣a,PM=﹣a2﹣2a+3. ∴1﹣a=﹣a2﹣2a+3,解得:a=﹣2或a=1(舍去). ∴点P的坐标为(﹣2,3). ∴PC∥x轴. ∵∠Q=∠BPC, ∴EQ∥PC. ∴点E与点F的纵坐标相同. 将y=3代入抛物线的解析式得:x2+2x﹣3=3,解得:x=﹣1﹣ 或x=﹣1+ (舍去). ∴点F的坐标为(﹣1 ,3). ∴EF=2﹣(﹣1﹣ )=3+ 第三章 单元检测卷 满分:120分 时间:90分钟 一、选择题(每题3分,共30分) 1.下列命题为真命题的是(  ) A.两点确定一个圆 B.度数相等的弧相等 C.垂直于弦的直径平分弦 D.相等的圆周角所对的弧相等,所对的弦也相等 2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是(  ) A.点P在⊙O外 B.点P在⊙O内 C.点P在⊙O上 D.无法确定 3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是(  ) A.70° B.60° C.50° D.30°       4.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于(  ) A.70° B.64° C.62° D.51° 5.秋千拉绳长3 m,静止时踩板离地面0.5 m,某小朋友荡秋千时,秋千在最高处踩板离地面2 m(左右对称),如图,则该秋千所荡过的圆弧长为(  ) A.π m B.2π m C.π m D. m 6.如图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于点E,F,OE=8,OF=6,则圆的直径长为(  ) A.12 B.10 C.14 D.15 (第6题)(第7题) 7.如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为(  ) A.(2,-1) B.(2,2) C.(2,1) D.(3,1) 8.如图,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于(  ) A.55° B.90° C.110° D.120° 9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是(  ) A.4 B.3+ C.3 D.3+    (第8题)(第9题) (第10题) 10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为(  ) A. B. C. D. 二、填空题(每题3分,共24分) 11.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可). (第11题) (第12题)  (第13题) 12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A=________. 13.如图,DB切⊙O于点A,∠AOM=66°,则∠DAM=________. 14.如图,在⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有__________________.     (第14题) (第15题) (第16题) 15.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________. 16.如图,在扇形OAB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________. 17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径是7,则GE+FH的最大值是________. (第17题)    (第18题) 18.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,N在⊙O上.下列结论:①MC=ND;②==;③四边形MCDN是正方形;④MN=AB,其中正确的结论是________(填序号). 三、解答题(19题6分,20~24题每题12分,共66分) 19.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.试判断直线AC与半圆O的位置关系,并说明理由. (第19题) 20.在直径为20 cm的圆中,有一条弦长为16 cm,求它所对的弓形的高. 21.如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4. (1)求点B,P,C的坐标; (2)求证:CD是⊙P的切线. (第21题) 22.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m. (1)求桥拱的半径. (2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由. (第22题) 23.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E. (1)求证:PA是⊙O的切线; (2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长; (3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值. (第23题) 24.如图①,AB是⊙O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D. (1)求证:∠DAC=∠BAC; (2)若AD和⊙O相切于点A,求AD的长; (3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并说明理由. (第24题) 答案 一、1.C 2.A 3.B 4.B 5.B 6.B 7.C 8.C 9.B 10.D 点拨:∵正六边形A1B1C1D1E1F1的边长为2=,∴正六边形A2B2C2D2E2F2的外接圆的半径为,则正六边形A2B2C2D2E2F2的边长为=,同理,正六边形A3B3C3D3E3F3的边长为=,…,正六边形AnBnCnDnEnFn的边长为,则当n=10时,正六边形A10B10C10D10E10F10的边长为===,故选D. 二、11.∠BAE=∠C或∠CAF=∠B 12.99° 点拨:易知EB=EC.又∠E=46°,所以∠ECB=67°.从而∠BCD=180°-67°-32°=81°.在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°. 13.147° 点拨:因为DB是⊙O的切线,所以OA⊥DB.由∠AOM=66°,得∠OAM=(180°-66°)=57°.所以∠DAM=90°+57°=147°. 14.∠6,∠2,∠5 点拨:本题中由弦AB=CD可知=,因为同弧或等弧所对的圆周角相等,所以∠1=∠6=∠2=∠5. 16.+ 点拨:连接OE.∵点C是OA的中点,∴OC=OA=1.∵OE=OA=2,∴OC=OE.∵CE⊥OA,∴∠OEC=30°.∴∠COE=60°.在Rt△OCE中,CE==,∴S△OCE=OC·CE=.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°.∴S扇形BOE==.又S扇形COD==.因此S阴影=S扇形BOE+S△OCE-S扇形COD=+-=+. 17.10.5 18.①②④ 点拨:连接OM,ON,易证Rt△OMC≌Rt△OND,可得MC=ND,故①正确.在Rt△MOC中,CO=MO.得∠CMO=30°,所以∠MOC=60°.易得∠MOC=∠NOD=∠MON=60°,所以==,故②正确.易得CD=AB=OA=OM,∵MC<OM,∴四边形MCDN是矩形,故③错误.易得MN=CD=AB,故④正确. 三、19.解:AC与半圆O相切. 理由如下:∵是∠BED与∠BAD所对的弧, ∴∠BAD=∠BED. ∵OC⊥AD, ∴∠AOC+∠BAD=90°. ∴∠BED+∠AOC=90°. 即∠C+∠AOC=90°. ∴∠OAC=90°. ∴AB⊥AC,即AC与半圆O相切. 20.解:∵这条小于直径的弦所对的弧有两条:劣弧与优弧,∴对应的弓形也有两个. 如图,HG为⊙O的直径, 且HG⊥AB,AB=16 cm, HG=20 cm,连接BO. ∴OB=OH=OG=10 cm,BC=AB=8 cm. ∴OC===6(cm). ∴CH=OH-OC=10-6=4(cm), CG=OC+OG=6+10=16(cm). 故所求弓形的高为4 cm或16 cm. (第20题) 21.(1)解:如图,连接CA. (第21题) ∵OP⊥AB,∴OB=OA=2. ∵OP2+BO2=BP2, ∴OP2=5-4=1,OP=1. ∵BC是⊙P的直径, ∴∠CAB=90°. ∵CP=BP,OB=OA, ∴AC=2OP=2. ∴B(2,0),P(0,1),C(-2,2). (2)证明:∵直线y=2x+b过C点, ∴b=6.∴y=2x+6. ∵当y=0时,x=-3, ∴D(-3,0).∴AD=1. ∵OB=AC=2,AD=OP=1, ∠CAD=∠POB=90°, ∴△DAC≌△POB. ∴∠DCA=∠ABC. ∵∠ACB+∠CBA=90°, ∴∠DCA+∠ACB=90°,即CD⊥BC. ∴CD是⊙P的切线. 22.解:(1)如图,点E是桥拱所在圆的圆心. (第22题) 过点E作EF⊥AB于点F, 延长EF交于点C,连接AE, 则CF=20 m.由垂径定理知, F是AB的中点, ∴AF=FB=AB=40 m. 设半径是r m,由勾股定理, 得AE2=AF2+EF2=AF2+(CE-CF)2, 即r2=402+(r-20)2.解得r=50. ∴桥拱的半径为50 m. (2)这艘轮船能顺利通过.理由如下: 当宽60 m的轮船刚好可通过拱桥时,如图,MN为轮船顶部的位置. 连接EM,设EC与MN的交点为D, 则DE⊥MN,∴DM=30 m,∴DE===40(m). ∵EF=EC-CF=50-20=30(m), ∴DF=DE-EF=40-30=10(m). ∵10 m>9 m,∴这艘轮船能顺利通过. 23.(1)证明:如图,连接CD,∵AD是⊙O的直径.∴∠ACD=90°. ∴∠CAD+∠ADC=90°. 又∵∠PAC=∠PBA, ∠ADC=∠PBA,∴∠PAC=∠ADC. ∴∠CAD+∠PAC=90°. ∴PA⊥DA.而AD是⊙O的直径, ∴PA是⊙O的切线. (2)解:由(1)知,PA⊥AD, 又∵CF⊥AD, ∴CF∥PA.∴∠GCA=∠PAC. 又∵∠PAC=∠PBA, ∴∠GCA=∠PBA. 而∠CAG=∠BAC, ∴△CAG∽△BAC. ∴=, 即AC2=AG·AB. ∵AG·AB=12, ∴AC2=12.∴AC=2. (3)解:设AF=x,∵AF∶FD=1∶2, ∴FD=2x.∴AD=AF+FD=3x. 在Rt△ACD中,∵CF⊥AD, ∴AC2=AF·AD,即3x2=12, 解得x=2或x=-2(舍去). ∴AF=2,AD=6.∴⊙O的半径为3. 在Rt△AFG中,AF=2,GF=1, 根据勾股定理得AG===,由(2)知AG·AB=12, ∴AB==.连接BD,如图. ∵AD是⊙O的直径,∴∠ABD=90°. 在Rt△ABD中,∵sin∠ADB=, AD=6,AB=,∴sin∠ADB=. ∵∠ACE=∠ADB,∴sin∠ACE=.  (第23题) 24.(1)证明:如图①,连接OC. ∵直线EF和⊙O相切于点C, ∴OC⊥EF.∵AD⊥EF, ∴OC∥AD.∴∠DAC=∠OCA. ∵OA=OC,∴∠BAC=∠OCA. ∴∠DAC=∠BAC. (2)解:∵AD和⊙O相切于点A, ∴OA⊥AD. ∵AD⊥EF,OC⊥EF, ∴∠OAD=∠ADC=∠OCD=90°. ∴四边形OADC是矩形. ∵OA=OC, ∴矩形OADC是正方形. ∴AD=OA. ∵AB=2OA=10, ∴AD=OA=5. (第24题) (3)解:存在,∠BAG=∠DAC.理由如下:如图②,连接BC.∵AB是⊙O的直径, ∴∠BCA=90°. ∴∠ACD+∠BCG=90°. ∵∠ADC=90°, ∴∠ACD+∠DAC=90°. ∴∠DAC=∠BCG. ∵∠BCG=∠BAG, ∴∠BAG=∠DAC. 本文档由香当网(https://www.xiangdang.net)用户上传

    下载文档到电脑,查找使用更方便

    文档的实际排版效果,会与网站的显示效果略有不同!!

    需要 15 香币 [ 分享文档获得香币 ]

    下载文档

    相关文档

    北师大版数学五年级下册第三单元测试卷

    北师大版数学五年级下册第三单元测试卷小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 想一想,填一填 (共8题;共23分)1. (2分)比较大小  (1)5升9...

    4个月前   
    200    0

    北师大版第四章因式分解单元测试卷

    北师大版第四章因式分解单元测试卷

    2年前   
    702    0

    2018-2019学年小学数学北师大版三年级下册第一单元除法单元测试卷

    2018-2019学年小学数学北师大版三年级下册 第一单元除法 单元测试卷姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的...

    4个月前   
    176    0

    2016年北师大版五年级下册《第3章分数乘法》单元测试卷(9)

    2016年北师大版五年级下册《第3章 分数乘法》单元测试卷(9)姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,...

    4个月前   
    122    0

    北师大版数学五年级下册第五单元分数除法单元测试

    北师大版数学五年级下册第五单元分数除法单元测试小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 填空题 (共5题;共9分)1. (2分)_______的 是2...

    4个月前   
    139    0

    三年级下册数学试题-第一单元除法测试卷 北师大版 (无答案)

    北师大版数学三年级下数学测试卷第一单元班级: 姓名: 分数: 一、填空(每空1分,共12分)...

    9个月前   
    332    0

    一年级下册数学试题-第四单元测试卷-北师大版(2014秋)(无答案)

    2018—2019学年度第二学期一年级数学 单元测试题(三) 第四单元 有趣的图形 班级: 姓名: 座号: 评...

    2年前   
    681    0

    北师大版一年级下册数学第一单元加与减(一)达标测试卷

    北师大版一年级下册数学第一单元加与减(一)达标测试卷小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 填一填。 (共5题;共19分)1. (3分)填一填____...

    4个月前   
    98    0

    二年级下册数学试题-第8单元测试卷(含答案)北师大版

    第八单元试卷(北大版小学二年级下册数学)一、学校要给同学们订做校服,有红、黄、蓝、白4种颜色,玲玲同学做了一个本班同学最喜欢的校服颜色情况的调查,下面是玲玲的调查记录。(每空6分,共24分)红...

    10个月前   
    377    0

    小学数学北师大版五年级下册第一单元测试卷

    小学数学北师大版五年级下册第一单元测试卷小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 看图填空。 (共1题;共3分)1. (3分)计算  (1) =____...

    3个月前   
    119    0

    2019年春部编版七年级语文下册期中测试卷(1-3单元)含答案

    部编版七年级语文下册期中测试卷 (满分150分 时间120分钟) 班级: 姓名: 得分: 一、积累与运用(40分) 1.下列加点字读...

    2年前   
    2222    0

    北师大版五年级数学下册期末测试卷(A)

    北师大版五年级数学下册期末测试卷(A)小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 填一填。 (共9题;共9分)1. (1分) = _______= __...

    4个月前   
    117    0

    北师大版三年级数学下册期中测试卷(A)

    北师大版三年级数学下册期中测试卷(A)小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 填空。 (共2题;共3分)1. (2分)找规律填数。 (1)4980、4...

    4个月前   
    96    0

    2019-2020学年小学数学北师大版二年级下册第一单元除法单元测试卷

    2019-2020学年小学数学北师大版二年级下册 第一单元除法 单元测试卷姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的...

    4个月前   
    121    0

    北师大版一年级下册数学单元试卷

    周测培优卷10加与减(三)的应用能力检测卷一、找规律填一填。(每题6分,共12分)二、我会选。(把正确答案的序号填在括号里。每题6分,共24分)1.下面的计算中,正确的是(  )。2.得数是六...

    3个月前   
    147    0

    北师大版三年级下册数学单元试卷

    周测培优卷8面积的应用能力检测卷一、我会填。(第1题3分,第4题5分,其余每题4分,共24分)1.相邻两个常用的面积单位间的进率是(   )。2.一块菜地长6米,宽4米,它的面积是(  )平方...

    3个月前   
    84    0

    北师大版数学三年级上册第八单元认识小数单元测试卷(四)

    北师大版数学三年级上册第八单元 认识小数 单元测试卷(四)姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来...

    4个月前   
    129    0

    北师大版数学五年级上册第四单元多边形的面积单元测试卷(三)

    北师大版数学五年级上册第四单元 多边形的面积 单元测试卷(三)姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一...

    4个月前   
    206    0

    北师大版数学一年级上册第一单元生活中的数单元测试卷

    北师大版数学一年级上册 第一单元生活中的数 单元测试卷姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个...

    3个月前   
    136    0

    北师大版数学一年级上册第二单元比较单元测试卷

    北师大版数学一年级上册 第二单元比较 单元测试卷姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检...

    3个月前   
    75    0

    文档贡献者

    思***1

    贡献于2020-11-22

    下载需要 15 香币 [香币充值 ]
    亲,您也可以通过 分享原创文档 来获得香币奖励!
    下载文档

    该用户的其他文档